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Abstract 

 

This paper examines the effects of robot adoption on employment and skills in US 
manufacturing plants (2010-2022). Using a difference-in-differences method, we find 
approximately 150% increase in job postings and 15% increase in employment in plants that 
adopt robots compared to non-adopters matched by industry and labor market. Requirements 
for design, maintenance and other technical skills increase for those who work with robots. 
Non-adopters lose employment reflecting negative spillover effect from adopters. These 
findings suggest increased competitiveness of robot adopters that raise output not only in the 
robotized stage of production but have positive spillover effects in the rest of the plant and in 
other plants within the same firm. Industry-level employment effects are negligible due to 
counterbalancing gains and losses. Our plant, firm, and industry level analyses suggest that 
productivity and human-robot complementarity effects dominate displacement, with job losses 
limited to outcompeted non-adopters. 
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Robots and Work 

Adrianto, Avner Ben-Ner, and Ainhoa Urtasun 

Robots, capable of performing both manual and cognitive tasks autonomously, have been 

integrated in various industries (Figure 1). The increasing adoption of robots has generated 

concern about the loss of jobs and skills (Frey and Osborne, 2017; Susskind, 2020). This paper 

addresses these concerns by studying the introduction of robots in US manufacturing plants 

during the period 2010-2022. Specifically, it investigates several key effects of robots: (a) the 

displacement of tasks performed by low-skill workers; (b) the creation or enhancement of tasks 

for both high-skill and low-skill workers due to complementarities with robots; (c) employment 

gains in robot adopters resulting from increased competitiveness due to productivity and 

quality improvements; (d) loss of employment in plants that do not adopt robots due to reduced 

competitiveness and production; and (e) changes in skill requirements for employees in 

different occupations. 

--- Insert Figure 1 here --- 

Early research from the 2010s used industry-level data to identify the effects of robots from 

variations in robot penetration in different industries and regions or countries over time (e.g., 

Graetz and Michaels, 2018; Borjas and Freeman, 2019; Acemoglu and Restrepo, 2020). These 

studies found negative employment effects that could not be attributed to either robot adopters 

or outcompeted non-adopters. Recent studies have estimated the effect of robot adoption at the 

firm-level, comparing employment before and after the introduction of robots relative to 

comparable firms that did not adopt robots. They find largely gains in employment, including 

for low-skill workers and losses by non-adopting firms (Koch et al., 2021; Dixon et al., 2021; 

Acemoglu et al., 2023; Hirvonen et al., 2022; Aghion et al., 2022). 

In this paper, we investigate the effects of robots in the plants where they are installed. 

Generally, most plants belong to multi-plant firms. Adoption of robots rarely occurs in all plants 

in a firm. In our analytical sample of US manufacturing plants, which omits very small firms, 

only a tenth of plants that adopt robots are in single plant firms. Hence, firm-level studies 

combine the effects of adoption in some plants with any spillover effects from adoption to non-

adoption in the same firm. This likely underestimates the direct effects of robot adoption on 
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employment, although the severity of underestimation is likely less than in industry-level 

studies. 

To conduct plant-level analyses, we use job postings from 2010-2022 (from Burning Glass 

Technologies). Adoption is identified based on the date of first job postings requiring robot-

related skills. We use a difference-in-differences estimation method developed by Callaway 

and Sant’Anna (2021) to estimate changes in labor demand for plants that adopt robots in 

different periods compared to those that do not. Adopters and non-adopters are propensity-

matched by industry, local labor market, and size. This method is the closest to random 

assignment to treatment and control groups to assess causality. Job postings do not necessarily 

reflect employment; to verify that results for postings hold for employment, we use plant 

employment data for a subset of the plants and sample period (from the Occupational Safety 

and Health Administration). 

In addition to plant-level analyses, since robots are usually installed only in some units of the 

production process, resulting in different adoption intensities, we assess the effects of the 

intensity of the use of robots on demand for employees. We also compare skill requirements 

for jobs that require robotic skills with those that do not. 

This paper contributes to the literature on the effects of technology on work by examining the 

multifaceted effects of robots on employment and skills. Our multilevel analyses at the unit, 

plant, firm, and industry levels are unique in the literature and allow us to identify key 

mechanisms through which robots affect work. We identify the effects of robot adoption on 

adopting plants as well as on non-adopting plants within the same firm and in non-adopting 

firms. Importantly, this approach permits the identification of spillover effects from robots 

within a plant, within a firm, and across firms. Furthermore, our analysis identifies occupations 

and skills directly from job postings rather than inferring them from educational levels. Our 

analyses concentrate on manufacturing plants, excluding warehouses, distribution centers, 

headquarters, and other establishments that do not affect production efficiency and product 

quality through robots. 

Our findings suggest that robots enhance employment and some skills in adopting plants and 

firms. They do so because robots may displace some production workers but require others to 

do programming, installation, maintenance, repair, supervision, and other activities that are 

carried out by humans. Robots also enhance competitiveness through productivity and quality 
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improvement, resulting in greater output that increases demand for employees in the non-

robotic parts of a plant and in some upstream and downstream plants that belong to the same 

firm. We do find that robots displace employment in firms that do not adopt robots, but the 

industry-level effect is close to nil. 

Literature review 

Concerns and anxiety about the impact of technology on labor have a long history (Mokyr, et 

al., 2015, Acemoglu and Johnson, 2023). The recent increase in the adoption of industrial 

robots has raised concerns about jobs and skills displacement (De Vries et al., 2020; Dixon et 

al., 2021; Salunkhe et al., 2023).  

The literature identifies three primary effects of robots on labor demand: substitution, 

complementarity, and productivity (Acemoglu and Restrepo, 2019). (a) Robots can substitute 

for workers whose main tasks are repetitive, require precision and consistency, must be 

sustained without interruption, or are hazardous. Substitution is often considered the dominant 

effect, the main source of anxiety about reduced employment (Frey and Osborne, 2017; 

Chiacchio et al., 2018; Blanas et al., 2019; Susskind, 2020). (b) However, workers must design 

the robotized workplace and install, program, maintain, and supervise the robots (Battisti and 

Gravina, 2021; Wallace, 2021). This entails complementarity between workers with different 

types of skills and robots. This suggests a shift in workers’ roles rather than complete 

substitution. (c) Firms that invest in new technologies produce more valuable output than their 

competitors (Bresnahan et al., 2002). Robots outperform humans in speed, accuracy, 

consistency, and waste reduction (DeStefano and Timmis, 2023) and improve workplace safety 

Gihleb, 2022; Bloss, 2016). Koch et al. (2021) find that industrial robots lead to substantial 

output gains. These gains can lead to increased production and sales of robot adopters, often at 

the expense of competitors in the same industry (Aghion et al., 2023). 

What is the net effect of these three factors on demand for labor and employment? The evidence 

is mixed regarding the effect of robots on employment and scant on the impact on skills. Early 

studies on the impact of robots on employment relied on industry-level data, identifying the 

effects of robots through variations in robot penetration across industries and regions (Graetz 

and Michaels, 2018; Borjas and Freeman, 2019; Acemoglu and Restrepo, 2020). These studies 

often found negative overall impacts, with Acemoglu and Restrepo (2020) estimating that one 

robot reduced employment by six workers in US commuting zones between 1993 and 2007. 
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However, industry-level analyses could not distinguish between job displacement in robot-

adopting plants and job losses in non-adopters due to increased competition (Aghion and 

Howitt, 1990; Bresnahan et al., 2002). 

The availability of firm-level data enabled researchers to compare employment changes in 

robot-adopting and non-adopting firms matched by industry and local labor market. Firm-level 

studies generally found positive employment effects in adopters. For instance, Koch et al. 

(2021) observed increased output and employment in Spanish firms that adopted, whereas non-

adopters experienced job losses. Similar findings were reported in other countries (Dixon et 

al., 2021; Acemoglu et al., 2023; Hirvonen et al., 2022; Aghion et al., 2022, Bonfiglioli et al., 

2024). Bessen et al. (2023) found wage increases and no effect on employment in firms with 

more than 500 employees compared to not-yet adopter firms. 

Firm-level analyses may mask heterogeneity across plants within firms, as robot adoption often 

occurs in only a minority of plants. Our data indicate that only a small proportion of plants in 

multi-plant firms adopt robots, and they do so at different times. Research has begun to focus 

on plant-level effect of robots on productivity and employment. However, this research is 

constrained by the lack of plant-level data about the introduction of robots, which forces 

researchers to use various proxies for robot adoption (Leigh et al., 2020; Raj and Seamans, 

2018; Aghion et al., 2022; Gihleb, 2022; Brynjolfsson et al., 2023; and Deng et al., 2023). 

Moreover, these studies do not have information about changes in skill requirements or 

occupational composition to evaluate possible heterogeneous effects of robot adoption. (We 

expand on this point later in the paper.) 

In sum, the literature has evolved from broad industry-level analyses to more precise firm- and 

plant-level studies. Growing evidence suggest that during the 2010s firms that adopted robots 

did not lose employment but likely have gained it. We still do not know whether this reflects 

all skill levels and occupations within a firm. Furthermore, we do not know if changes occur 

in the robotized or non-robotized parts of a firm. Therefore, conclusions about the complex 

interactions among the substitution, complementarity, and productivity effects and their 

combined net effect await further research. 

This paper aims to fill these lacunae. We estimate the effects of introduction of robots on labor 

and skill demand in much of the US manufacturing sector between 2010 and 2022 using several 

datasets, principally the content of job postings by occupation at the plant, firm, and industry 
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levels. This permits us to provide new insights into the multifaceted effects of robotics on work 

in manufacturing. 

 

Theoretical framework 

Building on the literature review, we develop a theoretical framework that leads to the 

statement of key testable hypotheses. Consider a technology in which three inputs participate 

in production: capital (equipment and tools), high-skill workers (engineers), and lower-skill 

workers (technicians and operators). Each input carries out specific tasks necessary for 

producing a single output of given quality. These tasks complement each other. The 

introduction of robots alters the relationships among these inputs. Robots can perform tasks 

previously carried out by lower-skill workers, but they require new tasks to be performed by 

high-skill workers (planning, programming, experimentation) and lower-skill workers 

(installation, maintenance, repair, monitoring). This technological change does not alter the 

fundamental production process but replaces direct labor with capital (robots) in some or all 

production tasks. Specific technical tasks such as programming and maintenance of robots 

become crucial. These tasks require both high-skill and lower-skill workers to possess new 

capabilities. These relationships are illustrated in Figure 2, which draws on Figure 2 in 

Acemoglu and Restrepo (2022). 

--- Insert Figure 2 here --- 

The balance between complementarity and displacement effects depends on the nature of the 

production process, where robots are introduced, and characteristics of specific robots. 

Specifically, some robots require more planning, experimentation, maintenance, repair, or 

monitoring than others. Such differences result in different degrees of complementarity and 

substitution with positive or negative net effects on the demand for labor in general and specific 

skills and occupations in particular. Hence in these grounds, it is possible that introduction of 

robots in a plant in different stages such as welding, painting, or assembly may lead to positive 

or negative changes in overall demand for labor, associated with changes in the same direction 

or in mixed directions for occupations with different skills. 

The literature reviewed earlier indicates that robots increase productivity, product quality, and 

workplace safety, improving adopters’ competitiveness in their market, leading to greater 
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production and sales, often at the expense of competitors. This expansion of production driven 

by the robotized stage of production in a plant drives increased activity in other parts of the 

process. For example, if robots can weld more rapidly and reliably a certain part that makes the 

product more desirable to buyers, the demand for the plant’s product will grow. Figure 3 

illustrates schematically a production process with four stages of which the third is robotized. 

--- Insert Figure 3 here --- 

To accommodate this growth, upstream and downstream stages of the production process 

receding and succeeding the welding stage will need to produce more. This increase will also 

necessitate increased support employees in logistics, accounting, HR and so on. To the extent 

that some of these stages are housed in the same plant, their demand for all types of labor will 

increase (although not necessarily in the same proportions). The magnitude of spillover effect 

from the robotized stage to demand for labor at the plant level is likely to depend on the relative 

magnitude of the non-robotized stages. The spillover effect will be small if the robotized stage 

constitutes a large segment of a plant’s workforce; this may be the case, for example, if the 

other stages are executed in other plants. Such plants may belong to the same firm as the plant 

that introduced robots, in which case the spillover effect will be captured within the same firm, 

or belong to other firms, in which case the spillover demand will affect other firms.1 We do not 

observe fully robotized, or lights-out, plants in our data.2 Our data show that only fifteen 

percent of jobs within an average robotic plant are directly related to robots, suggesting a 

positive net employment effect at the plant level. 

Based on this theoretical framework, we propose several hypotheses. The first is based on the 

interplay of substitution, complementarity, and productivity effects. There is substitution of 

blue-collar workers performing routine or replaceable tasks, along with complementarity, as 

robot adoption indirectly creates new tasks for workers, including those in occupations that no 

longer carry out tasks performed by robots (Acemoglu et al., 2023). Additionally, the 

productivity effect suggests that robot adoption enhances efficiency and output quality, 

 
1 Acemoglu and Restrepo (2022) refer to a “ripple effect” on worker groups that are not directly affected by 
automation but are impacted by it through the impact of adopters on labor and product markets. Our spillover 
effect is similar to the ripple effect. 
2 Based on press reports, we identify three nearly lights out plants: Tesla Gigafactory in Nevada, FANUC in 
Michigan, and Kiva Systems in Massachusetts. These plants post 56 percent, 38 percent, and 16 percent robotic 
job advertisements, respectively, above the average of 15 percent of such job postings in an average robotic plant. 
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allowing adopting plants to expand their production and gain market share, which can lead to 

increased employment. 

Hypothesis 1. Robot adoption increases employment in adopting plants. 

 

However, the effect of robot adoption differs across all occupations or production stages within 

a plant. The productivity effect of the robotized stage results in spillover demand for labor in 

the non-robotized stages.  

Hypothesis 2. Robot adoption increases demand for labor in the non-robotized stages of 

production and support activities to accommodate the positive productivity effect of robots. 

 

The increased production in a robotized plant has positive spillover effects throughout the 

value chain to which the plant belongs. In multi-plant firms in which some plants adopt robots, 

non-robotized plants that belong to the same value chain as the robotized plants will enjoy 

positive spillover effects. However, with the exception of fully vertically integrated firms, 

plants that belong to the same firm generally have outside customers, so the spillover effect in 

the firm will be limited.  

 

Hypothesis 3. Robot adoption in one or more plants in multi-plant firms will have positive 

effects on demand for labor in non-robotized plants in these firms.  

 

Adopting plants gain competitive advantage and increase their market share at the expense of 

non-adopters (Aghion et al., 2023). This leads to employment displacement in non-adopting 

plants. The extent of this displacement may vary depending on several factors, including the 

competitiveness of the market and the speed of robot diffusion. The displacement will occur 

in firms in which plants did not adopt robots.3 

 

Hypothesis 4. Robot adoption in adopting firms displaces employment in non-adopting firms. 

 

By examining these hypotheses, we aim to provide a comprehensive understanding of how 

robot adoption affects employment and skill dynamics in manufacturing plants.  

 
3 We assume that in general plants that make the same product within the same firm will be treated similarly, that 
is, will be robotized together, although this may depend on factors such as the degree of autonomy of plants, 
availability of skills required to implement robots, and so on. 
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Data 

We use online job postings for 2010-2022 collected by Burning Glass Technologies (BGT) as 

our primary data source. We focus on the manufacturing sector (NAICS codes 31-33). Each 

job posting contains information on the date the job vacancy was advertised, its job title, 

Standard Occupational Classification (SOC) code, firm name, job location, offered wage, 

required years of education, required years of experience, and required skills.4 Not all postings 

include information about all fields; for example, wages are not specified in a large majority of 

postings. A growing literature has used BGT data to study firms’ labor demand for skills (e.g., 

Deming and Kahn, 2018; Hershbein and Kahn, 2018; Deming and Noray, 2020; Leigh et al., 

2020; Acemoglu et al. 2022, Ben-Ner et al., 2023). 

Identification of robotic job postings and robotic technology. We use the common method of 

identifying technology adoption from job postings by identifying terms related to technology 

(Atalay et al., 2018; Dillender and Forsythe, 2019; Alekseeva et al., 2020; Atalay et al., 2020; 

Goldfarb et al., 2020; Leigh et al., 2020; Acemoglu et al., 2022; and Ben-Ner et al., 2023). This 

approach assumes that the adoption of technology requires specialized human capital. For 

example, Atalay et al. (2018) use ‘CAD’ or ‘CNC’ as included in jobs advertised in newspapers 

over several decades to identify the introduction and adoption of information and 

communication technologies (ICTs), Dillender and Forsythe (2019) use terms like ‘spreadsheet 

software’ to identify computerization, and Acemoglu et al. (2022) use ‘machine learning’ or 

‘computer vision’ to identify AI. We identify the use of robots through terms like ‘robotics’ (the 

full list is in Online Appendix B). 

Identification of robot adoption. We classify plants as robotic if they meet the following 

criteria. (a) A plant has posted at least ten robotic production jobs between the year in which it 

introduced robots and the last year of the sample period (2022). This ensures that we capture 

plants with sufficient human capital to meaningfully integrate robotics into their production 

process, and exclude those that only explored the possibility of introducing robots but did not 

pursue their adoption. Tables B1 and B2 in Online Appendix B1 show that results for job 

postings and employment are robust to changes in this criterion.  

 
4 BGT scrapes more than 40,000 online job boards and company websites. BGT removes duplicate postings and 
uses machine-learning algorithms to distill the full text of job advertisements into short phrases that summarize 
the skills that employers demand. 
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(b) A plant has to post robotic jobs in at least one of the last two years of the sample period. 

Table B3 in Online Appendix B indicates that the effects of robots remain significant and 

positive if we alter this criterion. 

(c) The timing of robot adoption is the year a plant first posts at least one production job 

opening requiring robotic skills. We perform two robustness checks on our approach to identify 

the timing of adoption. First, we move the adoption timing one year earlier and later than the 

adoption year we identified through the first robotic job posting. Results are available in Online 

Appendix Table A1 and Figure A1. Second, we increase the minimum threshold for identifying 

the timing of adoption from one robotic job posting to five and ten. The increase may postpone 

the year of adoption for plants that post very few robotic job postings in the beginning, which 

could indicate that they have not deployed robots in this period. Table A2 shows the results. 

The two analyses show strong positive effects of robot adoption on all occupations. 

It is possible for robots to be introduced in a plant without posting jobs for workers with robot 

skills. For instance, the adopting plant might rely on an external company, such as a robot 

integrator, to handle the planning, installation, maintenance, and reprogramming of robots. 

Alternatively, the plant may upskill its current workforce by retraining employees to manage 

robot-related tasks (Kelley, 1990; Fernández, 2001). In multi-plant firms, skilled workers could 

also be transferred from other plants to the adopting plant. These scenarios could lead to robot 

adopters being misclassified as non-adopters. Our job posting strategy to identify adopters 

captures the labor dynamics of the external market but does not account for internal dynamics 

such as these. Misclassification of robotic plants as non-adopters attenuates the estimated effect 

of robot adoption and thus works against our hypotheses. 

Table A3 in Online Appendix shows strong correlation between our measure of robot adoption 

from job postings and robot adoption data (stock and new installations) from the International 

Federation of Robotics (IFR). Figure A2 in the same appendix explores this relationship in 

further detail, including at the 3-digit level NAICS. This evidence suggests that our measure of 

robot adoption captures well changes in the use of robots at the industry level. 

As noted earlier, identification of a technology based on terms used in job postings is used in 

multiple research papers. There are other measures, IFR at the 3-digit NAICS level being the 

most commonly used in the literature. The use of this measure has substantial limitations 

because it is available only at the industry-level, and imputations have to be applied to use it at 
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the commuting zone or firm- and plant-levels (an issue with the firm-level is that most firms 

have multiple plants in different locations). The US Census Bureau offers plant-level data 

through the Survey of Manufacturing Technology (SMT) and the Annual Survey of 

Manufacturers (ASM). The SMT, conducted in the late 1980s, collected plant-level data on 

robotics in five high-tech industries representing less than 50% of total manufacturing 

employment. Studies such as Dinlersoz and Wolf (2024) and Dunne and Wolf (2005) have used 

the SMT data to analyze the effects of robotics. In 2018, ASM surveyed approximately 50,000 

manufacturing establishments, asking about the stock of industrial robots, the number of robots 

purchased, and capital expenditures on robotics. This dataset is experimental and may not meet 

some of the Census’s statistical quality standards. It covers the period from 2018 to 2021, which 

is much shorter than ours. Findings derived from this dataset remain unpublished (Brynjolfsson 

et al., 2023).5  

The analyses summarized in this subsection suggest that our measure of robot adoption and its 

timing provide a robust basis for the estimation of the effects of robots on work. Job postings 

offer unique insights into the tasks and skill requirements of jobs, enabling a direct analysis of 

the intensive margin, that is, changes in the skill content of jobs. As noted by Leigh et al. (2020), 

a worker operating a welding machine to manually weld sheet metal may have very different 

skills, qualifications and employment prospects than a worker who programs a robot to perform 

the same task. However, both workers would be classified under the same SOC code. Job 

postings highlight detailed shifts, such as an increased focus on programming or monitoring 

automation systems. See Online Appendix B for more details. 

Analytical sample. We construct an analytical sample of manufacturing establishments, to 

which we refer as plants, excluding headquarters, R&D centers, and other non-manufacturing 

facilities. We exclude numerous very small plants, and those that entered our sample already 

as robotic. The selection of our analytical sample follows established criteria commonly used 

in BGT data research (Deming and Kahn, 2018). Additionally, these criteria ensure that the 

analyzed plants have production processes suitable for robotization, enhancing relevance and 

accuracy. Online Appendix B describes the sample selection in detail. Our analytical sample 

consists of 28,394 plants in 8,575 firms; these posted 5,976,817 jobs, which represent 31 

percent of all manufacturing job postings in 2010-2022 in the BGT dataset.  

 
5 In the next section we report results in which we control for firm level capital expenditure and find that it absorbs 
little of the effect of robots on labor demand. 
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Job postings and employment. Differences in the number of job postings for the same 

occupation in different plants that have similar characteristics are likely to reflect differences 

in changes in employment across plants. Yet job postings cannot be converted into changes in 

employment because of separations, multiple jobs advertised in some postings, and more.6 We 

do not have access to the Annual Survey of Manufacturers’ plant-level longitudinal data, but 

obtained employment information for a sample of plants that reported to the US Occupational 

Safety and Health Administration (OSHA) for the period 2016-2022, which we matched with 

the job postings data. For industry-level data we use public datasets.7 

Classification of job postings by role and skill level. We classified the workforce in a plant into 

production-related occupations and support. Production jobs are directly involved with the 

production process. Professional production jobs typically require at least a four-year technical 

education and include engineers, programmers, managers and others; we refer to this group as 

high-skill workers. Other jobs are in production on the shop floor and include operators, 

welders, assemblers, and so on, referred to as low-skill workers. We extracted from this group 

jobs we call “direct,” such as assemblers, welders, and painters that are most likely to be 

replaced by robots. A third group of production workers consists of technicians, the middle 

skill. The rest of the workforce in the plant, from warehouse to accounting, purchasing, HR, 

finance, to general management, are in support jobs. In our analytical sample, 57% of postings 

are in production occupations and 43% in support. For details, see Online Appendix Table A4. 

We defer discussion of skill measures and related variables including descriptive statistics to 

the section that discusses skill change. 

Descriptive statistics. Table 1 displays the number of firms, plants, and job postings, along with 

the average number of postings per plant per year. These figures are provided separately for 

plants that did not adopt robots during 2010-2022 (referred to as never-adopter plants) and for 

those that did (adopter plants). For adopter plants, postings are further differentiated into those 

 
6 In the skill analysis, we find evidence that robotic job postings require greater technical skills. If some plants 
resort to retraining incumbent workers to transition into new roles with these skills instead of hiring externally 
(Kelley, 1990; Fernández, 2001), our estimates are conservative and may underestimate the total impact of robot 
adoption on labor demand. See Table 8 for more details. In the OSHA dataset for which we have both job postings 
and employment, we estimate the relationship between job postings and the change in employment at the plant 
level, presented in Online Appendix Section C. Moreover, Online Appendix Section D discusses the relationship 
between job postings and the Quarterly Workforce Indicator (QWI). Both analyses show that job postings 
correspond to a significant increase in employment. 
7 KLEMS, IPUMS-CPS, the Occupational Employment and Wage Statistics (OES), the Statistics of US 
Businesses (SUSB), and the Quarterly Workforce Indicators (QWI). 
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advertised before adoption (by not-yet adopter plants) and those advertised after adoption. 

Panel A focuses on our analytical sample of plants, while Panel B addresses a narrower subset 

of plants for which plant-level employment data is available from OSHA. We restrict the 

sample by ensuring data availability in both BGT and OSHA, removing outliers, and excluding 

plants that adopted robots before 2017, resulting in 93 firms and 118 plants. 

--- Insert Table 1 here --- 

Panel A reveals that within our analytical sample, adopter plants—-which constitute 3.8% of 

all plants—–advertise significantly more job postings on average than never adopter plants. 

Specifically, while never adopter plants post an average of 29 job advertisements per year, 

adopter plants post 65 jobs during the pre-adoption period. Following robot adoption, the 

difference is even more pronounced. The ratio of production to support workers is highest post 

robot adoption followed by pre-adoption and lowest for never adopters. A similar pattern is 

reflected in Panel B for OSHA for both job postings and employment (occupational breakdown 

is not available for this sample). 

Figure 4 shows the average number of job postings per plant and the share of robotic job 

postings in a robotic plant. The shares of high-skill and low-skill robotic job postings are 

relatively stable over time, hovering around 15 and 10 percent of the total job postings in each 

skill level occupational group. Medium-skill (technician) jobs experienced a slight decline 

during 2011-2014 and a steady increase thereafter, approaching 30 percent of technician job 

postings in an average robotic plant in 2022. Panel B shows that non-robotic plants within 

adopting firms hire more jobs on average than non-robotic plants in non-adopting firms. Both 

types of plant experience a steady increase in the proportion of low-skill jobs. 

--- Insert Figure 4 here --- 

Table 2 shows the distribution of the number of plants owned by firms with at least one plant 

adopting robots within our sample period. Most plants and the vast majority of job postings are 

in firms that own multiple plants, but the more plants a firm owns, the smaller the proportion 

of plants that adopt robots. In firms with more than 100 plants only 4.88 percent of plants 

adopted robots. Analyzing adoption of robots at the firm-level masks substantial heterogeneity. 

--- Insert Table 2 here --- 
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The industry distribution of plants is presented in Table A8. The largest concentration of robotic 

plants is in the transportation equipment manufacturing, which covers one-quarter of all robotic 

plants in the manufacturing sector, followed by computer and electronic product manufacturing 

and machinery manufacturing. The three industries combined cover one-half of robot adoption 

in manufacturing. 

Empirical analysis 

Our principal analyses of the impact of robot adoption on labor demand are based on the 

difference-in-differences estimation method developed by Callaway and Sant’Anna (2021). 

Plants that adopt robots are matched with non-adopting plants based on industry, local labor 

market, and size. This approach allows us to estimate the number of job postings and required 

skills while accounting for potential confounding factors. 

We test our hypotheses in the context of job postings and employment. Additionally, we explore 

the relationship between job postings and realized employment and conduct various robustness 

checks. Finally, we study the impact of robot adoption on the demand for skills in both robotic 

and non-robotic jobs. 

Effects of robots on labor demand 

In this section we explore first the effects of robot adoption on job postings at the plant-level, 

distinguishing between production occupations at three skill levels and support occupations. 

Next, we examine the effect of robot adoption on employment at the plant level. Finally, we 

estimate the effect of robot adoption at the firm and industry levels and evaluate the effects on 

non-adopter plants. 

Job postings at the plant level 

Table 3 details the average treatment effects (ATT) on the yearly job postings per plant. It 

compares plants that have adopted robotic technology with those that adopt robots in later years 

(between 𝑡 + 1 and 2022). We refer to them as not-yet adopters. We refer to plants that do not 

adopt robotics during the sample period as never adopters. The two groups of plants differ in 

size, as observed in Table 1, and most likely in their capabilities to introduce new technology 

(as found by Koch et al., 2021). It is possible that some not-yet adopters in t	have plans to adopt 

in future years and others adopt based on later decisions. It is also possible that some never-
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adopters in our sample plan to adopt later than 2022 and will adopt at some point. We have no 

information or instruments to handle these possibilities. 

--- Insert Table 3 here --- 

We find significant increases in job postings within the five-year window following robot 

adoption when comparing adopters with not-yet adopters and adopters with never-adopters. 

For all job postings, the estimated ATT is 64 in comparison with not-yet adopters and 98 in 

comparison with never-adopters. This implies that an average adopter plant that had 64.71 

postings before robot adoption will post 64.37 more jobs on average in the five years after 

adoption than a similar plant that did not yet adopt robots but will do so in the future. The 

comparison with never-adopters is even striking, where the average adopter will post 98.36 

more jobs than the control group. Both differences are statistically highly significant. This 

means that if the control group of never-adopters did not change their level of job postings in 

the relevant time frame, adopters increased the rate of job postings by 2.5 (i.e., 

(98.36+64.71)/64.71). This reflects the predicted number of annual job postings for a plant that 

posted 64.71 jobs before robot adoption as compared to a plant that never adopts robots. The 

ratio is smaller, about 2, for the comparison with future adopters. These findings provide 

support for Hypothesis 1. 

Consider next changes in demand for specific job categories. The ATT for all production 

workers is 39.16 for the not-yet adopter comparison and 62.03 for the never-adopter 

comparison, whereas for support jobs the parallel figures are 25.21 and 36.33. The ATT for 

production jobs relative to pre-adoption postings is much larger than for support jobs. The 

greatest increase in demand has been for high- and medium-skill workers, although there was 

an increase for low-skill and even direct workers.8 

The estimates in Table 3 are time treatment effects averaged over five years post adoption 

(Callaway and Sant’Anna, 2021). Figure 5 displays annual treatment effects. It shows a gradual 

rise in demand for every occupational category from the adoption year t0	to t4. Note that growth 

starts only after robot adoption, suggesting that the parallel trends assumption (that adopters 

and non-adopters do not have different job posting growth rate pre-adoption) is satisfied. The 

long-term effects of adoption tend to moderate (the curve becomes less steep) after five years 

 
8 Heterogeneous impacts by skill level were found during the pandemic (Cortes and Forsythe, 2023). 
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or so, as indicated in Figure A3. The results are less precise because the number of plants with 

more than seven years is small. 

--- Insert Figure 5 here --- 

These results demonstrate that integrating robots into the workplace positively affects labor 

demand across all occupations and skill levels. This increase can be driven by output expansion 

and complementarity between workers and robots. Output may increase if robots enhance the 

cost efficiency or the quality of the product of the robotized stage such as stage 3 in Figure 3. 

This will result in an increase in demand for the plant’s output. The increase in plant demand 

necessitates an increase in production in non-robotized stages such as 1, 2 and 4 in Figure 3. 

These stages must increase employment of workers on the floor, primarily low and medium 

skill and of high-skill workers who are likely to serve multiple production stages. The robotized 

stage will require fewer workers who work on the product but will require workers to install, 

supervise, maintain and repair the robots. This complementarity effect for low- and medium-

skill workers may be smaller than the displacement effect of direct workers in the robotized 

stage but the output effect that increases demand in other stages is larger leading to a net 

increase in demand for all workers in Table 3. The expansion of plant production requires an 

increase in support functions, though the increase is smaller in proportion to pre-adoption levels 

as compared to the increase in production workers.9 

Our data do not allow us to separate the output, substitution, and complementarity effects of 

the introduction of robots because we do not observe plant output or postings in different stages 

of the production process. Studies show that the estimates for output elasticities of labor for 

production and support workers are similar (Dunne and Roberts, 1993; Roberts and Skoufias, 

1997).10 Demand for support workers is not affected directly by robots but responds to the 

volume of activities in a plant. The similarity in elasticities suggests that the demand for 

workers in the two groups of occupations (production and support) should be similar to produce 

a given increase in output. If the proportional increase in demand for production workers is 

 
9 For example, the General Electric plant in Norwich, NY, advertised 169 job openings between 2014 and 2022. 
Of these, five were specifically for robotic welding positions under the SOC code 51-4122, beginning with the 
first one in 2017. This initial posting sought a welder skilled enough to set up a welding robot. The trend continued 
with a total of 33 additional welder jobs announced from 2017 onwards. Pre-adoption, 20% of non-robotic welding 
job postings required troubleshooting skills. Post-adoption, this demand increased to more than half of the non-
robotic postings. This example supports our results regarding the growth of job postings in direct occupation and 
reveals how the adoption of robots drives the need for complementary skills and increases overall productivity. 
10 The estimates from the two studies are similar to other studies that estimate overall output elasticities of labor 
demand, e.g., 0.75 by Hamermesh (1976) in the US and 0.78 by Görg et al. (2023) in OECD countries. 
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lower than that for support workers then the net effect of robots on production workers is 

negative because of substitution and displacement by robots. Conversely, if the increase is 

greater, the complementarity effect outweighs the substitution effect. While we cannot confirm 

directly the existence of a substitution effect, it likely exists for direct workers in the robotized 

stage, as studies have shown that robots increase turnover among low-skill workers (Deng et 

al., 2023). As noted earlier, Table 3 shows that the ratio of ATT to the number of pre-adoption 

number of postings is larger for production that support workers.  

Spillover effects from robot adaption within robotized plants and firms 

Within-plant spillover effects. We expect that in a plant with more non-robotized stages the 

spillover effect will be larger than that where the production process includes fewer non-

robotized stages with regard to the need to increase their employment to accommodate the 

increased production caused by the robotized stage. We measure the robotization of the 

production process using two proxies: the share of robotic job postings in total production 

postings and the share of unique robotic occupations (SOC) postings in total unique production 

occupations postings. We divide the 1,085 adopting plants into two groups based on the median 

of each of the two robotization proxies. The analysis presented in Table A5 in the Online 

Appendix indicates that plants in both groups of robotic plants experience significant increases 

in job postings across all occupations. However, plants with low share of robotized production 

exhibit higher ATTs than plants with a higher share of robotized production. This supports 

Hypothesis 2.  

Between-plants spillover effects. We turn next to examine the spillover effects from robot 

adopter plants to non-adopter plants within the same multi-plant firm. Are non-adopting plants 

in these firms like plants in firms that did not adopt robots in any of their plants or more like 

their robot-adopting sibling plants? Table 4 presents results from an analysis similar to that in 

the last column of Table 3 (where never-adopter plants are the control group) but removing 

non-adopting plants within adopting firms in Panel A and removing adopting plants in Panel 

B. In panel B, the unit of analysis is plant cohorts; we assign the non-robotic plants an adoption 

year for each adoption cohort and duplicate them for as many as the number of adoption cohorts 

in the adopting firm. 

--- Insert Table 4 here --- 
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Table 4 shows that both robotic and non-robotic plants increase their job postings relative to 

plants in non-adopting firms. The growth in adopting plants is substantially larger than in non-

adopting plants in the same adopting firm (ATT for all postings of 112.02 relative to pre-

adoption postings of 72.18 for robotic and ATT of 8.23 and pre-adoption postings of 39.21 for 

non-robotic plants). This suggests a spillover effect across plants in adopting firms that may 

occur because some plants in the same firm are part of the same production process, similar to 

the stages in the same plant depicted in Figure 3. It is likely that some multi-plant firms are 

partially vertically integrated so increased production in the robot-adopting plant required 

greater production–hence more jobs and job postings–in upstream and downstream plants.11 

For robustness, we reproduced the analysis for large firms (with more than 20 plants) and 

obtained similar conclusions (see Table A6 in the Online Appendix). These results support 

Hypothesis 3. 

Capital expansion 

A plant may introduce robots along with other capital expansion (e.g., in expectation of higher 

output demand in the future). The expansion may include hiring new workers and investing in 

new capital, including robots. As robot adoption and capital expansion happen simultaneously, 

the estimation from an (unconditional) difference-in-differences design combines the effect of 

the two events. To separate the robot adoption effect, we incorporate firm capital expansion—

proxied by real capital expenditures normalized by real total assets from COMPUSTAT. Table 

A7 shows the ATTs are significantly positive, although slightly smaller. This shows that robot 

adoption has a separate effect beyond general plant expansion. The capital expansion measure 

is at the firm level, which may raise a concern that the expansion may not be distributed equally 

across plants. As a robustness check, we restrict the sample to adopting firms with three or 

fewer plants to ensure that the expansion happens in robotic plants. We still find a significantly 

positive effect within this subsample.  

Employment effects 

To check that the increased number of job postings at plants adopting robots results in higher 

employment, we replicate our difference-in-differences analysis on a sample of plants with 

 
11 Such spillover effects may occur also across firms but we cannot detect them with our data and analysis; 
nevertheless, the cross-firm effects are likely to be much diffused across multiple firms and therefore of very small 
magnitude at the individual plant level. 
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available employment data from OSHA during 2016-2022. We construct a stacked sample 

similar to Bessen et al. (2023), in which adopting plants are matched with the comparison 

group by cohort. With a shorter sample period and some plants not reporting annually, we 

compare average employment in two pre-adoption years with average employment in three 

post-adoption years.12 We estimate the average treatment effects on the treated using a two-

way doubly-robust difference-in-differences design proposed by Sant’Anna and Zhao (2020), 

controlling for size, industry, the logarithm of wage in a commuting zone, and adoption cohort. 

We conduct the analysis at the plant- and at the firm-level. Employment is in logs.13 

The first column of Table 5 shows that plants adopting robots experience a 15% higher 

employment growth than non-adopters annually. The second column indicates that at the firm-

level the effect is positive but not significant. These findings suggest that the growth in job 

posting following robot adoption is reflected in increase in employment at the plant-level. 

Figure A4 in the Online Appendix shows event-time ATT for the log of full-time employment14, 

closely resembling Figure 5. This provides further support for Hypothesis 1. 

--- Insert Table 5 here --- 

Impact of robot-adopter plants on employment in never-adopting plants. Next, we explore 

whether the employment growth seen in robot-adopting plants occurs at the expense of plants 

owned by firms that have not adopted this technology. We cannot estimate the effect of robot 

adoption on non-adopters using difference-in-differences analysis because there is no control 

group for the non-treated plants. Instead, we estimate the impact of the penetration (density) of 

robots at the industry level on log of employment in non-adopting plants. As it is common in 

the literature on robot and other technology adoption in the US, we implement an instrumental 

variables two-stage least squares (IV 2SLS) approach from IFR data on European countries to 

reduce possible endogeneity with the following specification: 

𝑌!" = 𝛽# + 𝛽$𝑅%"&'+𝛾$𝑄%" + 𝜎! + 𝜏" + 𝜀%("     (1) 

 
12 For example, the 2017 adopters are matched with non-adopters that posted online job advertisements between 
2016 and 2019. A non-adopter may be repeated in more than one cohort if it has non-missing observations in at 
least one pre-adoption and one postadoption years. Hence, our observations are plant cohorts. 
13 Job postings represent changes (additions) in employment. The log of employment is comparable to job 
postings as it also measures changes in, as opposed to level of, employment. Online Appendix C shows that one 
job posting yields a 0.11 percent increase in employment and the relationship changes by plant size. 
14 We use three methods, no imputation, and the median or the last observation carried forward to impute missing 
values in years when plants do not report to OSHA. 
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where Y	 represents log of employment of plant k	 and year t. R	 is robot penetration rates, 

measured as the number of US robots in operation per one thousand workers in industry i	at 

time t	−	p, where p	=	{0,1,2}. The coefficient of interest is β1, the effect of a one-unit increase 

in robot stock per one thousand workers on employment in a given industry and year. We 

control for the industry output, Qi,t, plant fixed effects (σk), and year fixed effects (τt). Table 6 

presents the second-stage estimates of the 2SLS IV model. 

--- Insert Table 6 here --- 

Table 6 indicates that in industries where robot usage per one thousand workers increases by 

one unit in year t, employment in non-adopters does not respond in that year but decreases by 

0.4 percent one year later and by 0.5 percent in two years. This suggests that over time, the 

introduction of robots in an industry may lead to a gradual decline in employment at plants 

owned by firms that do not adopt this technology. The findings support the negative spillover 

effect on non-adopters in Hypothesis 4. As a robustness test, Table A9 in the Online Appendix 

replicates Acemoglu and Restrepo’s (2020) regression of the adjusted penetration of robots 

from IFR on the change in the log of postings. It corroborates the labor trade-off from non-

adopters to adopters. This supports Hypothesis 4. 

Industry level effects on employment. We aggregate data from our analytical sample to the 

industry level and use IV 2SLS regression to estimate the relationship between robot stock and 

employment. The specification is similar to Equation 1 but at the industry-level. Table A10 in 

the Online Appendix shows the second stage coefficients of industry-level robot penetration at 

three lengths of exposure on the log of full-time employment. At the industry level, we do not 

observe a consistent change in the level of employment within two years of a change in robot 

penetration rates.  

In sum, our findings in this section suggest that examining hiring and employment effects of 

robots at more granular levels reveals more nuanced results. The expansion in hiring activities 

is located in robotic plants, suggesting concentration of production activities within this type 

of plant. The small number of robotic relative to non-robotic plants, however, dilutes the effect 

at more aggregated levels. Moreover, studying the effect at the firm level may give a false 

impression that an adopting firm expands at the same rate. 
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Robot adoption effect on skills 

We focus on technical and general skills related to work in manufacturing. There are numerous 

technical and general skills; we select a subset of skills that were identified in the literature to 

be of relevance to work in manufacturing (Deming and Noray, 2020; Ben-Ner et al., 2023). We 

measure skills in similar ways as this literature. For each plant, we calculate the average count 

per posting in each occupational group of the terms that describe a given technical or general 

skill. 

For technical skills, we analyze design, production, repair and maintenance, quality control, 

machine learning, and automation (excluding robotics). These skills span the entire production 

process. For example, we measure design by counting terms such as ‘system design’, ‘product 

design’, and ‘engineering design and installation’. For general skills, we analyze reasoning, 

character, and social skills. For example, reasoning is measured by counting terms such as 

‘problem solving’, ‘research’, and ‘creativity’. Online Appendix Table A11 lists the terms we 

use to identify the skills analyzed below. 

Table 7 shows descriptive statistics of these technical and general skills comparing, as in Table 

1, never-adopter plants with adopter plants. For adopter plants, we distinguish preadoption and 

post-adoption skills. Post-adoption postings seem to require more production, repair and 

maintenance, machine learning, automation, reasoning, and character skills than pre-adoption 

postings. About fifteen percent of total post-adoption jobs are robotic postings, as indicated in 

Panel A of Figure 4. Adopter plants in pre-adoption demand more design, automation, and 

reasoning skills than never-adopters, but less repair and maintenance and quality control. As 

averages, these differences do not account for occupational distribution and other factors, 

which we analyze next. 

--- Insert Table 7 here --- 

Some plants do not post jobs every year in every occupation of interest. As a result, there are 

missing observations that cannot be analyzed with the difference-in-differences we used earlier, 

where zero postings are meaningful as they indicate a pause in hiring. With skills, the demand 

does not turn to lower (zero) skill demand when there is no demand for a certain type of worker; 

skill information is unavailable in years with missing data. To handle this issue, we average 

preadoption data (t−4	to t−1) into one period and post-adoption data (t0	to t+4) into another. We 

estimate the effects of robot adoption with a two-way doubly-robust difference-in-differences 
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design (Sant’Anna and Zhao, 2020), controlling for size, industry, the logarithm of wage in a 

commuting zone, and adoption cohort. We compare the average demand for various skills in 

each occupation in adopting plants before and after adoption with changes in plants that never 

adopted robotics (by the end of our sample period). This analysis is similar to the analysis we 

conducted for changes in employment. 

As discussed earlier, adoption of robotics is usually confined to one of several stages of the 

production process (Figure 3) and therefore the need for employees with robotics skills is 

limited to that stage. Panel A of Figure 4 shows that the proportion of post-adoption postings 

requiring robotics skills is small and varies across occupations. We analyze the differences in 

skill requirements before and after adoption, separately for robotics and non-robotics jobs. 

Results are presented in Table 8 for technical skills and in Table 9 for general skills. 

--- Insert Table 8 here --- 

Table 8 shows that robot adoption significantly changes the demand for technical skills in 

robotic job postings but not in non-robotic job postings.15 Robotic-related jobs demand 50 to 

90 percent more design, production, and repair and maintenance skills in compared to their 

pre-adoption levels, both in high-skill and low-skill occupations. We interpret this significant 

increase in relation to never-adopters as the creation of new tasks necessary to work with 

robots. On the other hand, high-skill and low-skill robotic-related jobs demand around 40 

percent less of quality control skills in compared to their pre-adoption levels. We interpret the 

decrease as evidence of displacement of tasks due to robots. Machine learning and automation 

other than robots also witness a significant upswing following robot adoption and in the case 

of robotic-related jobs, signaling complementarity between these technologies. Among high-

skill robotic jobs, the demand for design skills experienced the largest increase. For medium-

skill and low-skill, the increase in the demand for repair and maintenance was the largest. 

Table 9 shows that robot adoption has a negligible effect on general skills both for the robotics 

postings and the non-robotics postings of adopters.16 Of the three skills, only reasoning for 

high-skill robotic jobs is affected. The change is small relative to the average frequency it 

appeared in job postings before the adoption (around 11 percent).  

 
15 Appendix Table A14 shows the comparable results for the comparison with not-yet adopters. 
16 Appendix Table A15 shows the comparable results for the comparison with not-yet adopters. 
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In sum, we find that adopter plants do not change skill requirements for most occupations, 

supporting the argument that robot adoption adds workers instead of replacing incumbents with 

new workers with a different skill set. However, jobs that are directly involved in production 

and demand robotics skills—–which comprise a small proportion of a manufacturing plant’s 

workforce—require different skill sets, indicating the partial displacement of some traditional 

skills such as quality control by robots, possibly because they cause fewer quality issues than 

humans. This is accompanied by enhancing design, production, maintenance, and repair skills 

required to support the effective operation of robots on the shop floor. This indicates possible 

replacement of some low-skill workers by robots as well as by workers in similar direct 

occupations but with enhanced skills. 

Discussion and conclusions 

Robots change work. Our findings indicate that while robots can displace certain production 

tasks, they also create new opportunities for employment and skill development in adopting 

plants and firms. The economy, at least during the 2010s into the early 2020s, has not reached 

the stage of ‘lights out’ plants. Robot adoption has been selective, focused on certain stages of 

the production process. Nor has the economy reached a stage where robots and AI can fully 

operate autonomously without human intervention. Robots that work on the production line 

require many functions carried out by humans who do not have to be on the shop floor as 

workers did before robotization. These tasks include planning, programming, installation, 

adjustments, oversight, and more. While these employees may be invisible on the production 

floor, they work with computers, watch live streaming from the floor, and intervene as needed. 

In some cases, workers collaborate with robots on the shop floor. 

Our findings suggest that robots enhance employment and some skills in adopting plants and 

firms. They do so because robots may displace some production workers but require others to 

perform programming, installation, maintenance, repair, supervision and other activities that 

are carried out by humans. Robots also enhance competitiveness through productivity and 

quality enhancement, resulting in greater output that increases demand for employees in the 

non-robotic parts of a plant and in some upstream and downstream plants that belong to the 

same firm. It is not possible to identify with our data the magnitude of the spillover from the 

robotized part to the rest of the plant, but our analysis suggests that the spillover effect gets 

stronger as the introduction of robots impacts more non-robotized stages.  
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Robots certainly displace the tasks of some direct workers in the robotized stage of production 

but create other tasks that are carried out by workers in the same occupational classification. 

We cannot evaluate with our data whether the net employment effect of direct workers in the 

robotized stage is positive or negative, but we do find that the plant-level effect is positive. This 

may be entirely due to the spillover effect discussed above. In multi-plant firms in which some 

plants adopt robots but others do not, , demand for labor in non-adopting plants rises but much 

less than in the adopting plants. This is evidence for positive spillover effects at the firm level, 

with the spillover effect being much smaller than the direct effect at the plant level. The limited 

within-firm spillover effect is likely due to the fact that plants that belong to the same firm do 

not belong to the same value chain but many produce products for customers outside the firm. 

There are negative spillover effects from adopting plants to non-adopting ones in firms that do 

not adopt robots. This displacement effect arises from the increased competitiveness of 

adopters. We find that the industry-level employment effect is close to nil. This may be 

explained by an increase in the total productivity of the industry due to the robotized plants that 

gain approximately the employment that is lost by non-adopters. As Aghion et al. (2022) 

remark in the context of similar findings in France, the overall effect of automation is increased 

output. Autor (2015) attributes this to technological progress, which explains historical growth 

in output without the disappearance of work. 

There are several limitations to our study. Our findings are based primarily on changes and 

differences in the level of job postings. Firm demand for workers, as reflected by job postings, 

might be constrained by skill shortages and competition for similar skills in the labor market. 

Consequently, increased postings may not directly translate into employment growth. 

However, our findings suggest that demand associated with robot adoption generally leads not 

only to an increase in job postings but also in employment. Job postings and hirings capture 

changes only in the external labor market, which does not capture retraining of incumbent 

employees and transfer of employees across plants within the same firm. In the extreme, the 

use of retraining, transfer of employees across units of a firm, and reliance on contractors may 

result in no postings for employees with robotic skills (or posting only intermittently, resulting 

in misclassification of robot adopters as non-adopters). This may lead to an underestimation of 

the robots’ employment effect. However, our results show significant increases in postings for 

production and other roles post robot adoption, perhaps less than the true effect. Furthermore, 

we are reassured that our findings regarding job postings translate into larger employment 
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based on our analysis of a subsample for which we do have employment information as well 

as our analysis of the relationship between postings and employment changes in other datasets. 

Technological advancements in robotics suggest that the vintage of robots may matter to their 

impact on work. We control the timing of the introduction of robots through our staggered 

difference-in-differences analysis. We did not specifically investigate whether the effect of 

robots has changed over time due to technological advancements and firms learning how to 

deploy them more effectively.  However, most adoptions occur in the latter part of our sample 

period, hence they reflect recent robot technology in manufacturing. It is important to note that 

we excluded greenfield sites and warehouses from our sample, as the nature of robotic adoption 

and labor substitution in these environments may differ significantly. The introduction of AI in 

conjunction with robots may change the effects of robots on work. All these aspects—

technological advancements, the role of greenfield sites, the impact in industries like 

warehousing, and the integration of AI with robotics—are fruitful areas for future research. 

Several policy recommendations for government, business and educational institutions emerge 

from our study. (1) There is a need to support workers displaced by robotics, not so much in 

adopting plants but elsewhere in the economy. (2) Provision of training for reskilling workers 

to transition into new roles created by automation. (3) Relatedly, technical education should 

focus on programming, maintenance, and supervision of robotic systems and their integration 

with AI. (4) Encourage robot adoption by firms by enhancing their technical and human 

resource capabilities. (5) Improve data collection on robot adoption and its effects on 

employment to enable more detailed and comprehensive studies. It is important to support 

longitudinal studies to track the long-term impacts of robot adoption on different industries and 

regions.  
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Figure 1: Stock of industrial robots in the US, 1993-2021 
 

 
Notes: Stock of industrial robots based on installations from the International Federation of Robotics (IFR), 
assuming a depreciation rate of 10%, as in Graetz and Michaels (2018). The IFR defines industrial robots 
mainly by their physical tasks in industrial settings. However, advancements in AI and sensor technology 
now enable these robots to perform cognitive tasks like decision-making, process monitoring, and real-time 
response. In our study, which covers data up to 2022, we capture both the traditional physical roles of 
industrial robots and their growing cognitive capabilities as technology progresses. 
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Figure 2: Human-robot division of tasks in the robotized stage 
 

 
Notes: Figure depicts how the robotized stage impacts the allocation of tasks between humans and robots. 
Some tasks are being displaced but new tasks emerge, illustrating complementarity and substitution 
happening simultaneously.
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Figure 3: Robot application in a plant 
 

 
Notes: The highlighted box (Stage 3) represents the robotized production stage in a plant. 
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Figure 4: Average production robotics job postings per plant 
 
(A) Robotic plant 

 
(B) Non-robotic plant 

 
Notes: Figure shows in Panel A the total production job postings and the average percentage of robotics job 
postings from production job postings in a robotic plant and in Panel B the total production job postings in 
a non-robotic plant split into adopting and non-adopting firms. The percentage in Panel A is based on job 
postings within each occupational group (i.e., robotics job postings in occupation i	divided by total job 
postings in occupation i). 
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Figure 5: Event study of robot adoption effect on job postings 
 
(A) Adopter vs. not-yet adopter plants 

 
(B) Adopters vs. never-adopter plants 

 
Notes: Figure shows event time ATT. Table 3 shows overall ATT as aggregations of these. Postings in the 
year of adoption 𝑡! or in post-adoption years 𝑡", 𝑡#,𝑡%, 𝑡& are compared to postings in 𝑡'"; postings in pre-
adoption years are compared to postings a year ago. Vertical solid lines represent 95-percent confidence 
intervals. 
  



 34 

Table 1: Descriptive statistics 

Variable 

 Adopter plants 

Never-adopter plants 

(1) 

Pre-adoption 

(2) 

Post-adoption 

(3) 

A. Analytical sample (2010-2022) 

Number of firms 8,041 534 534 

Number of plants 27,309 1,085 1,085 

Number of postings 

All 5,091,407 186,934 698,476 

Production 2,894,690 100,916 414,049 

  High-skill 1,701,562 78,697 313,405 

  Medium-skill 204,315 4,926 22,294 

  Low-skill 988,813 17,293 78,350 

    Direct 241,143 3,273 18,225 

Support 2,196,717 86,018 284,427 

Average number of postings per plant 

All 28.98 64.71*** 146.71*** 

 (67.65) (149.12) (296.12) 

Production 16.48 34.93*** 86.97*** 

 (41.64) (81.09) (185.28) 

  High-skill 9.68 27.24*** 65.83*** 

 (37.24) (74.16) (170.57) 

  Medium-skill 1.16 1.71*** 4.68*** 

 (3.26) (4.67) (8.67) 

  Low-skill 5.63 5.99*** 16.46*** 

 (10.40) (11.79) (24.03) 

    Direct 1.37 1.13*** 3.83*** 

 (3.73) (3.19) (8.48) 

Support 12.50 29.77*** 59.74*** 

 (30.11) (75.76) (124.86) 

B. Limited sample (2016-2022) 
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Number of firms 2,159 93 93 

Number of plants 4,578 118 118 

Number of postings 581,151 13,600 35,639 

Average number of postings per 

plant 

29.97 58.04** 99.88** 

(65.38) (130.45) (141.76) 

Average full-time employment 

per plant 

314.09 584.02*** 586.24 

(376.44) (816.05) (687.00) 

Notes: Column 2 is based on four pre-adoption years (i.e., 𝑡'& to 𝑡'"). Column 3 is based on five 
postadoption years (i.e., 𝑡! to 𝑡&). Standard errors are shown in parentheses. Stars in column (2) reflect the 
t-test significance level of the mean difference between (1) and (2). Stars in column (3) reflect the t-test 
significance level of the mean difference between (2) and (3). Full-time employment is calculated as total 
work hours per year divided by 2,000 (i.e., 40 hours/week × 50 weeks). Analytical sample in panel A is 
obtained from BGT. Limited sample in panel B is obtained from the Injury Tracking Application (ITA) 
administered by OSHA. Descriptive statistics for skills are shown in Table 7. Significance levels: * 10%, 
** 5%, *** 1%. 
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Table 2: Descriptive statistics of adopting firms by size 

Firm size 
% Robotic plants per 

firm 

Firm

s 

Plants 

Postings Roboti

c 

Non-

robotic 

Tota

l 

1 plant 100 101 101 - 101 16,121 

2-5 plants 41.7 140 161 267 428 100,389 

6-20 plants 
18.98 161 304 1,485 

1,78

9 
500,225 

21-100 plants 
8.71 112 333 3,947 

4,28

0 

1,247,35

3 

>100 plants 
4.88 20 186 3,199 

3,38

5 

1,640,97

3 

Overall 

adopter 
37.58 534 1,085 8,898 

9,98

3 

3,505,06

1 

Notes: Table shows descriptive statistics of firms owning at least one robotic plant. Sample plants are 
restricted to those having at least one pre-adoption and one post-adoption observations. Number of job 
postings is calculated from four pre-adoption to five post-adoption years of a plant (i.e., 𝑡'& to 𝑡&). Never-
adopters (not shown) cover 7,615 firms, 18,411 plants, and 2,471,756 job postings. 
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Table 3: Robot adoption effect on job postings (difference-in-differences analysis) 
Occupation Pre-adoption ATT 

 postings Adopter vs. not-yet adopter Adopter vs. never-adopter 

All 64.71 64.37*** 98.36*** 

  (6.92) (14.01) 

Production 34.93 39.16*** 62.03*** 

  (4.53) (9.49) 

  High-skill 27.24 29.17*** 50.02*** 

  (3.41) (9.17) 

  Medium-skill 1.71 2.07*** 2.89*** 

  (0.22) (0.22) 

  Low-skill 5.99 7.92*** 9.12*** 

  (0.64) (0.67) 

    Direct 1.13 2.04*** 2.22*** 

  (0.26) (0.20) 

Support 29.77 25.21*** 36.33*** 

  (3.02) (5.00) 

Plants  1,085 28,394 

Notes: Table shows the 5-year (𝑡! to 𝑡&) average treatment effects (ATT) for the number of job postings. 
These are annual ATT per plant. ATT divided by pre-adoption 𝑡'& to 𝑡'" mean postings of adopters (column 
2) proxies a percentage change in postings. ATT are estimated using the multi-period difference-in-
differences with inverse probability weighting method (Callaway and Sant’Anna, 2021). Standard errors 
(shown in parentheses) are clustered by plant. Covariates include the number of postings in the first year 
the plant appears in the data, the commuting zone’s log of wages in 2007, and 3-digit NAICS code fixed 
effects. Significance levels: * 10%, ** 5%, *** 1%. 
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Table 4: Between-plant spillover effects of robot adoption (difference-in-differences 
analysis) 

Occupation 

A. Robotic plant B. Non-robotic plant 

Pre-adoption   

 (𝑡&) to 𝑡&$) 

postings 

ATT 

Pre-adoption    

(𝑡&) to 𝑡&$) 

postings 

ATT 

All 72.18 112.02*** 39.21 8.23*** 

  (19.22)  (0.94) 

Production 38.97 70.95*** 23.32 5.64*** 

  (12.84)  (0.54) 

  High-skill 30.48 58.41*** 17.86 5.01*** 

  (12.29)  (0.51) 

  Medium-skill 1.89 3.04*** 1.05 0.2*** 

  (0.28)  (0.04) 

  Low-skill 6.60 9.49*** 4.40 0.44*** 

  (0.81)  (0.13) 

    Direct 1.23 2.18*** 0.98 0.08 

  (0.22)  (0.06) 

Support 33.22 41.07*** 15.89 2.59*** 

  (6.75)  (0.39) 

Notes: Table shows the 5-year (𝑡! to 𝑡&) average treatment effects on the treated (ATT) for the number of 
job postings in plants owned by adopting firms. The comparison group is plants from never adopters. Non-
robotic plants in panel B are duplicated for multiple adoption cohorts in a firm and stacked together. Sample 
in panels A and B have the same set of firms, which own at least one robotic plant and one non-robotic 
plant. Covariates include the number of postings in the first year the plant appears in the data, the number 
of plants having adopted robots in a cohort (only for panel B), the commuting zone’s log of wages in 2007, 
and 3-digit NAICS code fixed effects. For robustness, Table A2 in the Online Appendix restricts the sample 
to large firms (i.e., firms with more than 20 plants). Significance levels: * 10%, ** 5%, *** 1%. 
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Table 5: Robot adoption effect on employment, 2016-2022 (difference-in-differences 
analysis) 

 
Plant-level 

(1) 

Firm-level 

(2) 

Log(Full-time employment) 0.15** 0.14 

 (0.06) (0.11) 

Mean Log(Preadoption 

employment) 
5.60 6.44 

Observations 32,480 15,468 

Unit cohorts (plants/firms) 16,240 7,734 

Units (plants/firms) 4,696 2,201 

Robotic units (plants/firms) 118 99 

Notes: Table shows the 3-year (𝑡! to 𝑡#) average treatment effects (ATT) for the log of full-time 
employment, comparing adopters with never adopters. ATT are estimated with the two-way difference-in-
differences estimator (Sant’Anna and Zhao, 2020), with average pre-adoption data (𝑡'# to 𝑡'") and post-
adoption data (𝑡! to 𝑡#). Standard errors are shown in parentheses. Covariates include employment in the 
first year the plant appears in the data, the commuting zone’s log of wages in 2007, cohort fixed effects, 
and 3-digit NAICS code fixed effects. The sample in column (2) includes firms with at least one robotic 
plant and one non-robotic plant. Significance levels: * 10%, ** 5%, *** 1%. 
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Table 6: Effect of industry-level robot penetration rates on employment in never adopters, 
2016-2022 (panel estimation with instrumental variable regression) 
 Period relative to adoption rate in 𝑡# 

 0 1 2 

Log(Full-time employment) -0.000 -0.004** -0.005** 

 (0.002) (0.001) (0.002) 

Mean robot penetration rates in $𝑡# 22.22 22.22 22.22 

 (23.21) (23.21) (23.21) 

Mean DV 5.40 5.40 5.40 

 (1.02) (1.02) (1.02) 

Observations 8,542 8,542 8,542 

Plants 3,992 3,992 3,992 

Notes: Table shows the effects of changing the stock of robots per 1,000 workers in an industry by one unit 
on the log of full-time employment in (non-robotic) plants owned by non-adopting firms. Each cell shows 
the second stage coefficient and standard errors (in parentheses, clustered by industry) of instrumental 
variable (IV) regressions. In stage 1 (not shown), the number of US industrial robot stock per 1,000 workers 
is predicted by the number of EURO5 industrial robot stock per 1,000 workers and EURO5 research and 
development capital stock per 1,000 workers. EURO5 countries include Denmark, Finland, France, Italy, 
and Sweden. Included as controls, US industry-level real GDP, year fixed effects, and plant fixed effects. 
Significance levels: * 10%, ** 5%, *** 1%. 
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Table 7: Descriptive statistics for skills 

Variable 
Never-adopter plants 

(1) 

Adopter plants 

Pre-adoption 

(2) 

Post-adoption 

(3) 

A. Technical skills 

Design 0.36 0.49*** 0.51 

 (0.43) (0.61) (0.41) 

Production 1.05 1.09 1.22*** 

 (0.81) (1.00) (0.81) 

Repair and maintenance 1.03 0.86*** 1.06*** 

 (0.84) (0.96) (0.79) 

Quality control 0.14 0.12*** 0.11* 

 (0.15) (0.17) (0.11) 

Machine learning 0.04 0.05 0.11*** 

 (0.13) (0.23) (0.26) 

Automation 0.10 0.13*** 0.18*** 

 (0.19)  (0.27) (0.22) 

B. General skills 

Reasoning 0.52 0.55*** 0.61*** 

 (0.37) (0.42) (0.32) 

Character 0.39 0.27*** 0.34*** 

 (0.40) (0.35) (0.30) 

Social 0.64 0.66 0.65 

 (0.41) (0.46) (0.34) 

Notes: Skills are measured as the average frequency the skill appears in production occupations. Standard 
errors are shown in parentheses. Stars in column (2) reflect the t-test significance level of the mean 
difference between (1) and (2). Stars in column (3) reflect the t-test significance level of the mean difference 
between (2) and (3). Means by production occupations are available in Tables A12 and A13 in the Online 
Appendix. Significance levels: * 10%, ** 5%, *** 1%. 
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Table 8: Robot adoption effect on technical skills (difference-in-differences analysis) 
 

Design 

(1) 

Production 

(2) 

Repair and 

Maintenance 

(3) 

Quality 

Control 

(4) 

Machine 

Learning 

(5) 

Automation 

(6) 

A. High-skill (22,929 plants; 117,362 plant-cohorts) 

ATT for robotics job 

postings 

0.56*** 0.51*** 0.33*** -0.05*** 0.21*** 0.51*** 

(0.05) (0.06) (0.04) (0.01) (0.03) (0.03) 

ATT for non-robotics 

job postings 

0.02 0.03 -0.02 -0.00 0.02* -0.01 

(0.02) (0.03) (0.02) (0.01) (0.01) (0.01) 

Pre-adoption mean 0.71 0.99 0.35 0.14 0.08 0.09 

B. Medium-skill (12,189 plants; 51,524 plant-cohorts) 

ATT for robotics job 

postings 

0.01 0.32*** 0.60*** 0.00 0.03** 0.26*** 

(0.06) (0.10) (0.17) (0.01) (0.01) (0.05) 

ATT for non-robotics 

job postings 

-0.05 -0.00 -0.24** 0.01 0.01 -0.01 

(0.04) (0.07) (0.10) (0.01) (0.01) (0.03) 

Pre-adoption mean 0.41 1.18 1.97 0.06 0.01 0.22 

C. Low-skill (21,605 plants; 108,975 plant-cohorts) 

ATT for robotics job 

postings 

0.13*** 0.71*** 1.33*** -0.05*** 0.06*** 0.25*** 

(0.04) (0.08) (0.12) (0.01) (0.02) (0.03) 

ATT for non-robotics 

job postings 

-0.01 0.08* 0.02 0.00 -0.00 -0.01 

(0.02) (0.04) (0.05) (0.01) (0.01) (0.02) 

Pre-adoption mean 0.18 1.30 1.47 0.10 0.01 0.16 

D. Direct (11,617 plants; 48,983 plant-cohorts) 

ATT for robotics job 

postings 

0.07 0.96*** 0.04 0.01 -0.00 0.12** 

(0.05) (0.16) (0.16) (0.03) (0.00) (0.05) 

ATT for non-robotics 

job postings 

0.01 -0.07 0.17* -0.00 -0.00 -0.01 

(0.01) (0.10) (0.10) (0.02) (0.00) (0.02) 

Pre-adoption mean 0.06 1.38 1.22 0.05 0.01 0.02 

Notes: Table shows the 5-year (𝑡! to 𝑡&) average treatment effects (ATT) for technical skills, comparing 
robot adopters with never-adopters. The dependent variable is the frequency of related terms appearing in 
job postings. ATT are estimated with the two-way difference-in-differences estimator (Sant’Anna and Zhao, 
2020), with pre-adoption data averaged into one period and post-adoption into another. Standard errors are 
shown in parentheses. Means of pre-adoption values (𝑡'& to 𝑡'") for each occupation are shown below the 
ATT. Plant-cohorts include unique plants that are replicated across cohorts to construct a stacked sample. 
Covariates include the number of postings in the first year the plant appears in the data, the commuting 
zone’s log of wages in 2007, cohort fixed effects, and 3-digit NAICS code fixed effects. Table A12 shows 
parallel results for the comparison between adopters and not-yet adopters. Significance levels: * 10%, ** 
5%, *** 1%. 
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Table 9: Robot adoption effect on general skills (difference-in-differences analysis) 
 Reasoning Character Social 

 (1) (2) (3) 

A. High-skill (22,929 plants; 117,362 plant-cohorts) 

ATT for robotic job postings 

 

0.08*** -0.03 -0.05* 

(0.03) (0.02) (0.03) 

ATT for non-robotic job postings 

 

0.02 0.01 0.03* 

(0.02) (0.01) (0.02) 

Preadoption mean 0.69 0.28 0.78 

B. Medium-skill (12,189 plants; 51,524 plant-cohorts) 

ATT for robotic job postings 

 

-0.00 0.03 0.00 

(0.04) (0.04) (0.05) 

ATT for non-robotic job postings 

 

-0.03 0.03 0.01 

(0.03) (0.03) (0.04) 

Preadoption mean 0.42 0.26 0.54 

C. Low-skill (21,605 plants; 108,975 plant-cohorts) 

ATT for robotic job postings 

 

0.05 -0.04 -0.05 

(0.03) (0.03) (0.03) 

ATT for non-robotic job postings 

 

-0.02 0.03* 0.00 

(0.02) (0.02) (0.02) 

Preadoption mean 0.38 0.27 0.52 

D. Direct (11,617 plants; 48,983 plant-cohorts) 

ATT for robotic job postings 0.08 -0.00 -0.04 

(0.06) (0.06) (0.07) 

ATT for non-robotic job postings 

 

0.07 0.10* -0.01 

(0.05) (0.06) (0.05) 

Preadoption mean 0.28 0.21 0.38 

Notes: Table shows the 5-year (𝑡! to 𝑡&) average treatment effects (ATT) for technical skills, comparing 
robot adopters with never-adopters. The dependent variable is the frequency of related terms appearing in 
job postings. ATT are estimated with the two-way difference-in-differences estimator (Sant’Anna and Zhao, 
2020), with pre-adoption data aggregated into one period and post-adoption into another. Standard errors 
are shown in parentheses. Means of pre-adoption values (𝑡'& to 𝑡'") for each occupation are shown below 
the ATT. Plant-cohorts include unique plants that are replicated across cohorts to construct a stacked sample. 
Covariates include the number of postings in the first year the plant appears in the data, the commuting 
zone’s log of wages in 2007, cohort fixed effects, and 3-digit NAICS code fixed effects. Table A13 shows 
parallel results for the comparison between adopters and not-yet adopters. Significance levels: * 10%, ** 
5%, *** 1%. 
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Appendix A. Extensions, robustness checks, details of variable construction 
 
Table A1 shows the effect of robot adoption when the adoption year is shifted to one year 
earlier (panel A) or later (panel B) than the adoption year identified through the first 
robotic job posting posted in a plant. For example, a plant that has an adoption year in 
2015 is assigned a new adoption year in 2014 (panel A) or 2016 (panel B). The sample 
of plants is restricted to those used in the main analysis for job postings (Table 3). 
 
Table A1. Robot adoption effect on job postings for shifting adoption year to t-1 and t+1 

Occupation 

A. Adoption in t-1   B. Adoption in t+1 
 ATT   ATT 

Pre-
adoption 
postings 

Adopter 
vs. not-

yet 
adopter 

Adopter 
vs. 

never-
adopter  

Pre-
adoption 
postings 

Adopter 
vs. not-

yet 
adopter 

Adopter 
vs. never-
adopter 

All 61.98 52.91*** 80.70***   82.91 5.70 49.20*** 
  (6.26) (3.87)    (8.45) (5.01) 
  
Production 

32.92 33.59*** 51.63***   46.12 2.17 28.99*** 

  (3.31) (2.50)    (4.76) (3.12) 
  High-skill 25.84 24.73*** 41.06***   35.26 2.66 23.14*** 
  (3.01) (2.28)    (4.29) (2.82) 
  Medium-
skill 

1.62 1.63*** 2.44***   2.40 -0.34 1.34*** 
 (0.27) (0.14)    (0.29) (0.17) 

  Low-skill 5.46 7.22*** 8.13***   8.46 -0.14 4.51*** 
  (0.73) (0.49)    (0.78) (0.48) 
    Direct 1.02 2.16*** 2.13***   1.67 0.43 1.39*** 
  (0.33) (0.27)    (0.32) (0.24) 
Support 29.07 19.33*** 29.07***   36.79 3.53 20.21*** 
  (3.28) (1.56)    (4.24) (2.03) 
Plants 774 28,083    1,041 28,350 
Robotic plants 774 774   1,041 1,041 
Notes: Sample includes all plants. Covariates include first-year number of job postings, 
commuting zone’s average log of wage, and 3-digit NAICS. Standard errors are 
clustered by firm. Significance: * 10%; ** 5%; *** 1%. 
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Table A2 presents the effect of robot adoption when the minimum number of robotic 
production job postings required to identify the year of adoption is raised from one to 
five (panel A) or ten (panel B). If the minimum is set to five (ten) postings, the adoption 
year is defined as the year when the cumulative number of robotic postings reaches at 
least five (ten). For example, if a robotic plant posts one robotic job in 2015, two in 2016, 
and two more in 2017, the year of adoption would be 2017. While the number of robotic 
plants remains unchanged, the adoption year may be delayed if a plant posts fewer than 
five (in Panel A) or ten (in Panel B) robotic job postings in the first year. 
 
Table A2. Robot adoption effect on job postings when the minimum number of robotic 
postings required to identify the year of adoption is increased to five in panel A and to 10 
in panel B 

Occupation 
A. 5 robotic job postings  B. 10 robotic job postings 

Pre-adoption 
postings ATT 

 
Pre-adoption 

postings ATT 

All 83.90 64.23***  97.95 60.55** 
  (22.31)   (26.36) 

Production 46.83 40.72**  55.69 40.51** 
  (16.44)   (18.72) 

High-skill 35.66 30.81*  41.07 31.68* 
  (16.20)   (17.91) 

Medium-skill 2.40 2.32***  3.07 1.99*** 
  (0.42)   (0.50) 

Low-skill 8.77 7.60***  11.55 6.84*** 
  (0.68)   (0.94) 

Direct 1.86 2.04***  2.64 2.03*** 
  (0.23)   (0.34) 

Support 37.07 23.51***  42.26 20.04** 
  (6.01)   (8.22) 

Plants  28,394   28,394 
Robotic plants  1,085   1,085 

Notes: Table shows the results of increasing the threshold of identifying the year of robot 
adoption from 1 robotic job posting in production occupations to (A) 5 robotic job 
postings and (B) 10 robotic job postings. The comparison group is never adopters. 
Covariates include first-year number of job postings, commuting zone’s average log of 
wage, and 3-digit NAICS. Standard errors are clustered by firm. Significance: * 10%; ** 
5%; *** 1%. 
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Table A3 shows the relationship between several measures of robot adoption from BGT 
and IFR. In column 1, the number of robotic plants from BGT is correlated with the 
number of robot operational stock from IFR. Column 2 shows the association between 
the number of robotic job postings from BGT and the number of new robot installations 
from IFR. Column 3 shows the association between the share of robotic plants and the 
number of robot operational stocks per 1,000 workers. All models include industry fixed 
effects. 
 
Table A3. Relationship between our job-postings based measure of robot adoption and 
IFR’s data on robots 
  Robotic plants Robotic job postings Share of robotic 

plants 

  (1) (2) (3) 

Robot operational 

stock 

0.0044***     

(0.0008)     

New robot 

installations 

  0.1360***   

  (0.0144)   

Robot operational 

stock/1,000 workers 

    0.1477** 

    (0.0327) 

Fixed effects    

Industry Yes Yes Yes 

Industry-years 110 110 110 

R2 0.923 0.734 0.815 

Notes: Standard errors are clustered by industry. Significance levels: * 10%, ** 5%, *** 
1%. 
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Table A4. SOCs and assigned occupational categories 
Occupation 2010 SOC code (number of postings) 

a) Production  

High-skill 

  Technical manager 11-3051 (140,920), 11-9041 (113,582), 11-1021 (103,362), 11-9111 

(56,710), 11-9121 (47,889), 11-3061 (44,873), 11-3071 (39,854), 11-3021 

(17,649), 11-9021 (13,432), 11-9013 (1,451) 

  Computer 15-0000 (1,670,256) 

  Engineer 17-2000 (1,089,905) 

Medium-skill 

  Technician 17-3020 (350,326), 17-3030 (837) 

Low-skill  

  Operator* 51-0000 (769,721), 49-0000 (414,937) 

    Direct**  53-7062 (140,633), 51-2092 (43,012), 51-2011 (39,943), 51-4121 

(35,127), 51-9111 (22,833), 53-7064 (20,309), 51-2022 (14,896), 53-1021 

(14,111), 53-1031 (13,046), 47-2141 (11,165), 53-7199 (4,119), 51-9121 

(3,361), 51-2099 (3,312), 51-9122 (2,648), 51-4122 (2,241), 51-9123 

(1,153), 51-2031(1,100), 51-2023 (748), 51-2091 (673), 51-2041 (538), 

51-2021 (364), 47-3014 (13), 51-2093 (6) 

b) Support*** 11-0000 (833,795), 13-0000 (747,392), Unclassified (577,341), 

43-0000 (494,466), 19-0000 (247,741), 41-0000 (191,485), 290000 

(183,091), 27-0000 (151,108), 53-0000 (150,004), 47-0000 

(86,812), 17-0000 (53,532), 33-0000 (43,335), 35-0000 (41,381), 

23-0000 (32,965), 25-0000 (31,690), 37-0000 (30,684), 31-0000 

(22,897), 21-0000 (12,550), 39-0000 (10,943), 45-0000 (5,585), 55-0000 

(3,971) 

Notes: 
* Operator occupations include 6-digit SOC codes in 49 and 51 not listed in Direct 
occupations. 
** Direct occupations include painters, assemblers, welders, packagers, and material 
handlers. 
*** Support occupations include 6-digit SOC codes not listed in high-skill, medium-skill, 
and low-skill. 
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Table A5 shows the effect of robot adoption on subsamples with low and high degree of 
robotized production process. The degree of robotization is measured using two proxies: 
the share of robotic job postings in total plant production postings (panel A) and the share 
of unique robotic SOCs from unique production SOCs (panel B). Results show that a low-
robotized production process has a higher positive spillover effect due to higher labor 
demand in non-robotized processes. Vice versa, a process with high share of robotization 
has a low spillover effect as substitution and complementarity effects are at play in most 
processes, giving less opportunities for the productivity effect to materialize. 

Table A5. Within-plant spillover effects: Robot adoption effect by share of robotization 
of the production process 

Occupation 
  

A. Low share robotized   B. High share robotized 
Pre-adoption 

postings ATT  Pre-adoption 
postings ATT 

A. Share of robotic production job postings in total plant production postings 
All 109.31 172.09***  12.93 25.89*** 
  (14.87)   (1.71) 
Production 58.21 107.77***  7.91 18.26*** 
  (11.09)   (1.18) 
  High-skill 46.90 92.27***  4.42 10.37*** 
  (10.66)   (0.79) 
  Medium-skill 2.62 3.62***  0.65 1.88*** 
  (0.31)   (0.14) 
  Low-skill 8.69 11.89***  2.84 6.01*** 
  (0.75)   (0.66) 
    Direct 1.65 2.73***  0.53 1.63*** 
  (0.48)   (0.31) 
Support 51.10 64.32***  5.02 7.63*** 
  (5.17)   (0.63) 
Plants   27,852     27,851 
Robotic plants   543     542 

B. Share of unique robotic production SOCs from unique production SOCs 
All 77.33 100.45***  49.45 79.38*** 
  (4.12)   (9.72) 
Production 42.71 63.66***  25.53 49.46*** 
  (2.72)   (4.59) 
  High-skill 32.27 50.42***  21.16 39.23*** 
  (2.41)   (4.19) 
  Medium-skill 2.35 3.06***  0.93 2.58*** 
  (0.24)   (0.19) 
  Low-skill 8.09 10.18***  3.44 7.65*** 
  (0.78)   (0.60) 
    Direct 1.60 2.79***  0.57 1.58*** 
  (0.50)   (0.24) 
Support 34.62 36.79***  23.91 29.93*** 
  (1.57)   (5.60) 
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Plants  27,854   27,849 
Robotic plants  545   540 
Notes: Robotic plants are split at (A) the median share of robotic job postings in the 
adoption year (t0), 6.3 percent, and (B) the median share of unique robotic SOCs from 
unique production SOCs, 17.1 percent. The median is calculated based on 1,085 robotic 
plants. Covariates include first-year number of job postings, commuting zone’s average 
log of wage, and 3-digit NAICS. Standard errors are clustered by firm. The comparison 
group is never adopters. Significance levels: * 10%, ** 5%, *** 1%.
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The analysis in Table A6 aims to capture the cross-plant spillover effect within large firms 
that own at least one robotic plant. The sample includes adopting firms owning more than 
20 plants. Panel A shows the effect of adoption in robotic plants. In panel B, an adoption 
year is assigned to a non-robotic plant as many times as the number of adoption cohorts 
in the adopting firm. For example, for a firm that adopted robots in 2014, 2015, and 2016, 
each non-robotic plant, conditional on having enough pre- and post-adoption 
observations, is duplicated three times and assigned the (pseudo) adoption years. For this 
reason, the unit of analysis for panel B is plant-cohort. Plants in panels A and B are 
compared with non-robotic plants owned by non-adopting firms.  
 
Table A6. Between-plant spillover effects: Robot adoption in firms with more than 20 
plants (difference-in-differences analysis) 

Occupation A. Robotic plant B. Non-robotic plant 

Pre-adoption postings ATT Pre-adoption postings ATT 

All 87.66 125.77*** 39.98 8.28*** 

  (19.91)  (0.94) 

Production 46.42 80.32*** 23.85 5.86*** 

  (13.53)  (0.57) 

  High-skill 36.87 68.18*** 18.35 5.47*** 

  (12.28)  (0.50) 

  Medium-skill 2.03 3.11*** 1.05 0.17*** 

  (0.31)  (0.04) 

  Low-skill 7.52 9.03*** 4.45 0.22 

  (0.77)  (0.13) 

    Direct 1.42 1.91*** 0.99 0.00 

  (0.21)  (0.05) 

Support 41.24 45.45*** 16.13 2.43*** 

  (5.75)  (0.40) 

Observations  12,078  38,882 

Notes: Table shows the 5-year (t0	to t+4) average treatment effects on the treated (ATT) 
for the number of job postings per plant in large firms (firms owning more than 20 plants). 
Sample of non-robotic plants is duplicated for multiple adoption cohorts in a firm and 
stacked together. Sample of robotic and non-robotic plants have the same set of firms. 
Covariates include the number of postings in the first year the plant appears in the data, 
the number of plants having adopted robots in a cohort (for non-robotic plants), the 
commuting zone’s log of wages, and 3-digit NAICS code fixed effects. Significance 
levels: * 10%, ** 5%, *** 1%.  
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The analysis in Table A7 aims to capture the effect of robot adoption isolated from the 
effect of capital expansion. BGT data is merged with COMPUSTAT’s public firm data 
through firm names to obtain capital expenditures. We evaluate whether the ATT differs 
between the model with and without firm-level capital expansion. The first row shows 
the ATT for all public firms. We perform a heterogeneity analysis by size for public 
firms in rows two and three to show that our results hold for firms with varying sizes. In 
rows four to six, we show the effect of capital expansion in small firms to address the 
concern that the firm-level variable does not sufficiently capture plant-level variations 
in expansion, particularly in firms that own numerous plants. By restricting the sample 
to firms with very few plants, firm-level expansion reflects more closely plant-level 
expansion. However, the sample size is very limited. 

Table A7. Robot adoption effect on job postings (difference-in-differences) controlling 
for firm-level capital expansion expenses, plants in publicly traded firms 

Occupation Pre-adoption 

postings 

ATT Plants Robotic 

plants No expansion With expansion 

1. All public firms 83.26 107.59*** 106.29*** 8,972 509 

  (12.80) (12.67)   

2. Small public firms (20 or 

fewer plants) 

63.05 69.96*** 69.34*** 2,576 124 

 (18.52) (18.34)   

3. Large public firms (more 

than 20 plants) 

89.94 114.09*** 111.83*** 6,396 385 

 (23.62) (22.77)   

4. Public firms with 1 plant 13.25 20.18 19.59 292 8 

  (13.65) (14.91)   

5. Public firms with 1 and 2 

plants 

76.09 33.14* 30.45* 502 15 

 (18.88) (18.25)   

6. Public firms with 3 or fewer 

plants 

51.55 19.30** 17.43** 634 26 

 (7.86) (6.98)   

Notes: ATTs reflect the change in all job postings in four (A) years or (B) quarters 
following robot adoption. The comparison group is never adopters. Covariates include 
first-year number of job postings, commuting zone’s average log of wages, 3-digit 
NAICS, and the firm-level change in real capital expenditure normalized by real total 
assets (for models that include this variable). Capital expenditure (obtained from 
COMPUSTAT) includes expenditures for capital leases, increase in funds for 
construction, reclassification of inventory to property, plant and equipment, increase in 
leaseback transactions when included in the investing section of the statement of cash 
flows, any item included in the property, plant and equipment from the balance sheet, and 
logging roads and timber. The base year for real capital expenditures is 2015. Standard 
errors are clustered by firm. Significance levels: * 10%, ** 5%, *** 1%.  
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Table A8. Industry distribution of plants 

 Industry name 
A. Full sample (2010-2022) B. End of 2022 

NR R Total NR R Total 

311 Food Manufacturing 2,599 60 2,659 1,674 54 1,728 

312 
Beverage and Tobacco Product 

Manufacturing 
891 29 920 684 29 713 

313 Textile Mills 2 0 2 1 0 1 
314 Textile Product Mills 45 0 45 37 0 37 
315 Apparel Manufacturing 33 4 37 20 3 23 

316 
Leather and Allied Product 

Manufacturing 
22 0 22 20 0 20 

321 Wood Product Manufacturing 336 4 340 271 3 274 
322 Paper Manufacturing 501 5 506 361 5 366 
323 Printing and Related Support Activities 585 7 592 428 7 435 

324 
Petroleum and Coal Products 

Manufacturing 
438 10 448 301 10 311 

325 Chemical Manufacturing 3,287 98 3,385 2,127 90 2,217 

326 
Plastics and Rubber Products 

Manufacturing 
549 25 574 400 24 424 

327 
Nonmetallic Mineral Product 

Manufacturing 
621 23 644 517 22 539 

331 Primary Metal Manufacturing 822 25 847 548 19 567 
332 Fabricated Metal Product Manufacturing 1,401 64 1,465 976 52 1,028 
333 Machinery Manufacturing 1,918 110 2,028 1,349 97 1,446 

334 
Computer and Electronic Product 

Manufacturing 
4,009 167 4,176 2,368 150 2,518 

335 
Electrical Equipment, Appliance, and 

Comp 
541 43 584 311 39 350 

336 
Transportation Equipment 

Manufacturing 
4,336 277 4,613 2,619 263 2,882 

337 
Furniture and Related Product 

Manufacturing 
245 15 260 176 14 190 

339 Miscellaneous Manufacturing 708 34 742 373 33 406 
33 Unclassified 3,420 85 3,505 2,335 69 2,404 

Total  27,309 1,085 28,394 17,896 983 18,879 
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Notes: 3-digit NAICS codes; NR stands for non-robotics postings and R stands for 
robotics postings 
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Table A9 shows how the percentage of postings of never adopter plants and, separately, 
the percentage of postings of adopter plants change with the adjusted penetration of robots 
(APR) at the industry-level, calculated as Acemoglu and Restrepo (2019) from IFR and 
EU KLEMS. The estimates indicate opposite effects of robots on adopters and never 
adopter plants. Specifically, one more robot per thousand workers is associated with a 
0.87% decrease in the postings of never adopter plants between 2010 and 2020 and a 
1.86% increase of the postings of adopter plants between 2010 and 2019. 
 
Table A9. Change in log postings and APR 
 Never-adopter plants Adopter plants 

 2010-2019 2010-2020 2010-2019 2010-2020 

EURO5 APR 0.1011 -0.872*** 1.855** 0.632 

 (0.349) (0.254) (0.760) (0.549) 

Mean of change in log postings 95.792 81.715 140.614 116.707 

Mean of EURO5 APR 7.361 10.243 8.373 12.037 

R2 0.000 0.002 0.007 0.002 

Observations 6,449 5,968 862 854 

Notes: 𝐸𝑈5	𝐴𝑃𝑅%("(,")) = ∑
-*)
+ &($./,(*(,*)))-*(

+

0,,*(/0
+( , where 𝑅%,"

(  is the stock of robots in 

industry i, country j, year t from IFR; 𝐿%,"(&1
(  is employment in thousand workers in 

industry i, country j, year 𝑡# − 3 from EU KLEMS; and 𝑔%("(,")) is the growth rate of 
output in industry i, country j from EU KLEMS. EURO5 includes Denmark, Finland, 
France, Italy, and Sweden. The dependent variable, change in the logarithm of postings, 
is multiplied by 100. Robust standard errors to heteroscedasticity. Significance levels: * 
10%, ** 5%, *** 1%. 
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Table A10 shows the second-stage coefficients of IV regressions within two years 
following a change in the number of robot stocks per 1,000 workers in an industry. The 
dependent variable is the log of employment with data from multiple sources (i.e., 
KLEMS, the Occupational Employment and Wage Statistics, IPUMS CPS, the Statistics 
of US Businesses, and the Quarterly Workforce Indicators). 
 
Table A10. The effect of industry-level robot penetration rates on industry-level log of 
full-time employment, 2010-2022 (panel estimation with instrumental variable 
regression) 
Data Source DV lag relative to penetration 

rate in 𝑡# 

Observations Mean DV 

𝑡#	 𝑡$	 𝑡2	

KLEMS 0.0009 0.0026 0.0031 90 13.74 

(All establishments) (0.0018) (0.0025) (0.0028)  (0.82) 

OES 0.0032** 0.0037* 0.0043* 90 13.74 

(All establishments) (0.0013) (0.0020) (0.0022)  (0.85) 

IPUMS 0.0003 -0.0039 -0.0049 90 13.39 

(Establishments ≥ 100 employees) (0.0037) (0.0044) (0.0050)  (0.81) 

SUSB 0.0036 0.0079* 0.0087* 90 13.35 

(Establishments ≥ 100 employees) (0.0028) (0.0042) (0.0046)  (0.90) 

QWI 0.0024* 0.0028 0.0034 90 13.29 

(Establishments ≥ 250 employees) (0.0012) (0.0017) (0.0019)  (0.84) 

Notes: The dependent variable is the log of employment with data from various sources. 
The independent variable is the number of robot stocks per 1,000 workers in industry k	
and year t. The instruments are the number of robot stock per 1,000 workers and the 
number of research and development capital stock per 1,000 workers in EURO5 
countries. Standard errors (in parentheses) are clustered by industry. Covariates include 
US real GDP in industry k	and year t, industry fixed effects, and year fixed effects. Sample 
from IPUMS and SUSB includes establishments with at least 100 employees; QWI, 
establishments with at least 250 employees; KLEMS and OES, all establishments. 
Significance levels: * 10%, ** 5%, *** 1%. 
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Table A11. Most frequently used terms in production occupations 
Skill requirement Terms (number of postings) 

Design system design (173,665), product design (122,384), engineering drawings (112,525), autocad 

(106,568), engineering design and installation (104,596), engineering design (98,764), object-

oriented analysis and design ooad (88,278), mechanical design (67,798), microsoft visio 

(66,912), process design (66,667), computer aided drafting/design cad (64,964), catia (50,683), 

human machine interface hmi (46,868), design of experiments doe (45,247), circuit design 

(39,402), database design (38,413), design for manufacture/design for assembly dfm/dfa 

(35,461), electrical design (34,387), 3d modeling / design (33,229), user interface ui design 

(30,958) 

Production manufacturing processes (369,059), machinery (352,335), six sigma (286,170), welding (248,763), good 

manufacturing practices gmp (220,910), machining (216,006), lean manufacturing (215,267), lean six sigma 

(159,645), current good manufacturing practices cgmp (135,102), machine operation (133,122), calipers 

(95,172), soldering (85,193), failure mode and effects analysis fmea (79,605), grinders (79,112), lathes (77,286), 

failure analysis (76,890), kaizen (70,127), iso 9001 standards (65,350), machine tools (64,141), six sigma black 

belt (60,393) 
Repair and 

maintenance 

repair (782,529), predictive / preventative maintenance (275,604), hand tools (250,230), test equipment 

(219,672), schematic diagrams (206,405), calibration (144,731), power tools (124,870), wiring (119,244), 

micrometers (111,836), electrical systems (103,071), hvac (88,765), hydraulics (82,035), oscilloscopes (73,108), 

equipment operation (70,826), plumbing (69,548), equipment maintenance (63,120), painting (53,927), wiring 

diagrams (38,663), inspection records (35,670), equipment repair (33,812) 
Quality control quality assurance and control (502,794) 

ML python (243,844), machine learning (51,012), artificial intelligence (28,461), automated testing (25,773), apache 

hadoop (21,838), splunk (21,052), image processing (18,752), automation tools (16,877), chef infrastructure 

automation (16,039), deep learning (15,459), r (14,399), clustering (11,271), computer vision (11,250), 

tensorflow (8,818), neural networks (6,718), apache hive (6,678), mapreduce (6,158), natural language 

processing (6,064), laboratory automation (3,593), pattern recognition (3,476) 
Automation computer numerical control cnc (133,413), embedded software (70,682), programmable logic controller plc 

programming (50,140), electromechanical systems 
(26,649), automation systems (25,946), computerized numerical control lathes 
(14,804), servo drives / motors (12,001), rockwell automation (10,910), computeraided manufacturing cam 

(10,243), mastercam (8,000), devicenet (6,853), computer aided manufacturing cam (6,536), process field bus 

profibus (5,032), cnc machine 
(4,935), abb (4,621), machine vision (4,603), g-code (4,197), controlnet (4,096), zemax (4,002), motion control 

systems (3,752) 
Reasoning problem solving (1,167,194), research (648,171), creativity (328,315), analytical skills (187,502), basic 

mathematics (169,651), statistics (82,315), critical thinking (81,588), mathworks simulink (42,377), creative 

problem solving (37,005), clinical research (36,035), biostatistics (17,145), market research (12,037), mathcad 

(11,434), analytical chemistry (8,965), adobe creative suite (8,834), 8d problem solving (8,298), analytical 

testing (7,364), mathematical modeling (6,195), technology research (5,355), product research (4,865) 
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Character detail-oriented (526,330), multi-tasking (288,232), self-starter (219,671), time management (188,153), meeting 

deadlines (106,030), positive disposition (84,505), prioritizing tasks (73,079), energetic (64,146), initiative 

(32,760), self-motivation (30,841), goal setting (14,332) 

Social communication skills (1,954,215), written communication (512,582), verbal / oral communication (300,008), 

presentation skills (241,993), oral communication (139,476), listening (79,812), team building (66,479), 

negotiation skills (51,376), prepare presentations (32,643), team management (23,849), business 

communications (22,742), persuasion (20,965), social media (14,502), effective communications (12,624), 

contract negotiation (10,630), technical presentations (4,383), presenting solutions (3,304), price negotiation 

(2,514), corporate communications (2,214), presentation design (2,022) 
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Table A12. Technical skills, means and standard deviations 
Occupation Non-adopter Adopter Non-adopter Adopter 

Pre-adoption Post-adoption Pre-adoption Post-adoption 

Non-

robotics 

postings 

Robotics 

postings 

Non-

robotics 

postings 

Robotics 

postings 

(1) (2) (3) (4) (5) (6) (7) (8) 

 A. Design D. Quality control 

High-skill 0.55 0.66*** 0.69 1.27*** 0.18 0.16*** 0.15 0.09*** 

(0.63) (0.71) (0.53) (1.05) (0.22) (0.24) (0.16) (0.21) 

Medium-skill 0.32 0.45*** 0.39* 0.47 0.08 0.06*** 0.07 0.06 

(0.63) (0.77) (0.54) (0.73) (0.21) (0.19) (0.18) (0.20) 

Low-skill 0.14 0.21*** 0.20 0.31*** 0.13 0.10*** 0.10 0.07*** 

(0.32) (0.48) (0.34) (0.63) (0.21) (0.20) (0.15) (0.21) 

  Direct 0.07 0.10* 0.13* 0.23*** 0.07 0.06 0.07 0.09** 

(0.27) (0.35) (0.37) (0.65) (0.21) (0.19) (0.18) (0.26) 

 B. Production E. ML 

High-skill 1.00 1.02 1.11** 1.52*** 0.05 0.06 0.11*** 0.31*** 

(0.99) (1.10) (0.88) (1.50) (0.17) (0.25) (0.23) (0.68) 

Medium-skill 1.19 1.09** 1.24*** 1.71*** 0.02 0.02 0.03*** 0.08*** 

(1.20) (1.26) (1.06) (1.61) (0.21) (0.10) (0.18) (0.46) 

Low-skill 1.14 1.27*** 1.33 2.04*** 0.01 0.01 0.02 0.06*** 

(0.96) (1.16) (0.84) (1.67) (0.12) (0.11) (0.13) (0.31) 

  Direct 0.86 1.04*** 1.02 2.41*** 0.00 0.00 0.01** 0.02* 

(1.05) (1.24) (1.03) (1.87) (0.04) (0.04) (0.10) (0.14) 

 C. Repair and maintenance F. Automation 

High-skill 0.47 0.36*** 0.42*** 0.83*** 0.08 0.09 0.10 0.68*** 

(0.68) (0.53) (0.54) (1.09) (0.21) (0.26) (0.16) (0.85) 

Medium-skill 2.26 1.93*** 1.98 2.90*** 0.16 0.21*** 0.20 0.54*** 

(1.92) (1.79) (1.63) (2.30) (0.38) (0.48) (0.35) (0.73) 

Low-skill 1.40 1.41 1.42 2.66*** 0.11 0.15*** 0.15 0.43*** 

(1.22) (1.34) (0.99) (2.36) (0.27) (0.36) (0.24) (0.67) 

  Direct 0.93 0.98 0.94 1.60*** 0.01 0.02 0.03** 0.15*** 

(1.22) (1.18) (1.11) (1.80) (0.11) (0.13) (0.13) (0.40) 

Notes: This table shows means and standard deviations for technical skills as the count of 
terms. Stars in (2) reflect the t-test significance level of the mean difference between (2) 
and (1). Stars in (3) and (4) reflect the mean difference between (3) and (2) and (4) and 
(2), respectively. Significance levels: * 10%, ** 5%, *** 1%. 
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Table A13. General skills, means and standard deviations 

Occupation 
Non-adopter 

Adopter 

Pre-adoption 

Post-adoption 

Non-robotics 

postings 
Robotics postings 

(1) (2) (3) (4) 

 A. Reasoning 

High-skill 0.66 0.67 0.76*** 0.82*** 

(0.47) (0.49) (0.38) (0.62) 

Medium-skill 0.42 0.42 0.47** 0.52*** 

(0.53) (0.51) (0.46) (0.63) 

Low-skill 0.39 0.39 0.44*** 0.48*** 

(0.42) (0.44) (0.37) (0.61) 

  Direct 0.32 0.31 0.39*** 0.42*** 

(0.48) (0.48) (0.49) (0.62) 

 0.66 0.67 0.76*** 0.82*** 

 B. Character 

High-skill 0.42 0.28*** 0.36*** 0.33*** 

(0.47) (0.36) (0.35) (0.47) 

Medium-skill 0.36 0.25*** 0.34*** 0.32*** 

(0.58) (0.44) (0.48) (0.56) 

Low-skill 0.40 0.29*** 0.38*** 0.34** 

(0.50) (0.44) (0.42) (0.56) 

  Direct 0.42 0.30*** 0.39*** 0.31 

(0.62) (0.59) (0.58) (0.57) 

 C. Social 

High-skill 0.84 0.80** 0.83* 0.76* 

(0.53) (0.52) (0.41) (0.60) 

Medium-skill 0.53 0.54 0.54 0.54 

(0.61) (0.60) (0.49) (0.64) 

Low-skill 0.53 0.57** 0.55 0.52** 
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(0.50) (0.56) (0.43) (0.64) 

  Direct 0.41 0.44 0.44 0.34*** 

(0.57) (0.58) (0.53) (0.56) 

Notes: This table shows means and standard deviations for general skills as the count of 
terms. Stars in (2) reflect the t-test significance level of the mean difference between (2) 
and (1). Stars in (3) and (4) reflect the mean difference between (3) and (2) and (4) and 
(2), respectively. Significance levels: * 10%, ** 5%, *** 1%. 
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Table A14 is a companion table to Tables 8 and 9. It shows the effect of robot adoption 
on technical skills in robotic and non-robotic job postings. The comparison group is not-
yet adopters. 
 
Table A14. Robot adoption effect on technical skills, adopter vs. not-yet adopter 

Occupations 

Plant-

cohorts 
Design Production 

Repair and 

maintenance 

Quality 

control 
ML Automation 

(1) (2) (3) (4) (5) (6) (7) 

 A. Robotics job postings 

High-skill 1,044 0.47*** 0.63*** 0.34*** -0.06*** 0.10*** 0.47*** 

(0.07) (0.09) (0.06) (0.02) (0.03) (0.03) 

Pre-adoption mean  [0.69] [1.01] [0.33] [0.14] [0.04] [0.09] 

Medium-skill 448 0.08 0.48*** 0.57** 0.02 0.03* 0.39*** 

(0.10) (0.16) (0.28) (0.03) (0.02) (0.07) 

Pre-adoption mean  [0.42] [1.17] [2.00] [0.06] [0.01] [0.21] 

Low-skill 779 0.16*** 0.60*** 1.34*** -0.03 0.07*** 0.18*** 

(0.05) (0.11) (0.17) (0.02) (0.02) (0.04) 

Pre-adoption mean  [0.20] [1.30] [1.43] [0.10] [0.01] [0.16] 

Direct 229 0.08 0.95*** 0.06 -0.01 -0.00 0.10 

(0.07) (0.23) (0.22) (0.04) (0.00) (0.07) 

Pre-adoption mean  [0.07] [1.41] [1.18] [0.05] [0.02] [0.04] 

 B. Non-robotics job postings 

High-skill 1,156 0.06 0.03 0.05 -0.03 -0.01 0.01 

(0.05) (0.07) (0.05) (0.02) (0.01) (0.01) 

Pre-adoption mean  [0.64] [1.04] [0.34] [0.16] [0.03] [0.09] 

Medium-skill 610 0.02 0.04 -0.14 0.01 0.01 0.03 

(0.09) (0.12) (0.21) (0.03) (0.01) (0.04) 

Pre-adoption mean  [0.45] [1.10] [1.98] [0.06] [0.02] [0.20] 

Low-skill 1015 -0.02 -0.04 0.24** 0.01 0.00 -0.02 

(0.03) (0.06) (0.10) (0.01) (0.00) (0.02) 

Pre-adoption mean  [0.22] [1.29] [1.34] [0.10] [0.01] [0.14] 

Direct 392 -0.00 -0.09 -0.03 0.00 -0.00 -0.00 

(0.03) (0.10) (0.12) (0.02) (0.00) (0.01) 

Pre-adoption mean  [0.13] [1.01] [1.01] [0.05] [0.00] [0.01] 

Notes: This table shows the 5-year (𝑡#, 𝑡)) average treatment effects (ATT) for technical 
skills, comparing robot adopters with not-yet adopters. The dependent variable is the 
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frequency of related terms appearing in job postings. ATTs are estimated with the two-
way difference-in-differences estimator (Sant’Anna and Zhao, 2020), with pre-adoption 
data aggregated into one period and post-adoption into another. Standard errors are shown 
in parentheses. Means of pre-adoption values (𝑡&), 𝑡&$) for adopters are shown in square 
brackets. Covariates include the number of postings in the first year the plant appears in 
the data, the commuting zone’s log of wages, cohort fixed effects, and 3-digit NAICS 
code fixed effects. Significance levels: * 10%, ** 5%, *** 1%. 
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Table A15 is a companion table to Tables 8 and 9. It shows the effect of robot adoption 
on general skills in robotic and non-robotic job postings. The comparison group is not-
yet adopters. 
 
Table A15. Robot adoption effect on general skills, adopter vs. not-yet adopter 

Occupations 
Plant-cohorts Reasoning Character Social 

(1) (2) (3) (4) 

 A. Robotics job postings 

High-skill 

 

1,044 

 

0.00 -0.01 -0.05 

(0.04) (0.03) (0.05) 

Pre-adoption mean  [0.69] [0.25] [0.77] 

Medium-skill 

 

448 

 

0.05 0.02 0.05 

(0.07) (0.08) (0.08) 

Pre-adoption mean  [0.44] [0.25] [0.54] 

Low-skill 

 

779 

 

0.09* -0.04 -0.02 

(0.05) (0.05) (0.05) 

Pre-adoption mean  [0.36] [0.22] [0.51] 

Direct 

 

229 

 

0.11 -0.06 0.02 

(0.07) (0.07) (0.09) 

Pre-adoption mean  [0.22] [0.21] [0.33] 

 B. Non-robotics job postings 

High-skill 

 

1,156 

 

-0.04 0.04 -0.01 

(0.03) (0.03) (0.04) 

Pre-adoption mean  [0.68] [0.25] [0.79] 

Medium-skill 

 

610 

 

0.01 0.04 0.03 

(0.06) (0.07) (0.07) 

Pre-adoption mean  [0.43] [0.22] [0.55] 

Low-skill 

 

1015 

 

0.04 0.06 0.04 

(0.04) (0.05) (0.04) 

Pre-adoption mean  [0.39] [0.25] [0.55] 

Direct 

 

392 

 

0.14*** -0.03 -0.04 

(0.04) (0.05) (0.06) 

Pre-adoption mean  [0.27] [0.26] [0.43] 
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Notes: This table shows the 5-year (𝑡#, 𝑡)) average treatment effects (ATT) for general 
skills, comparing robot adopters with not-yet adopter. The dependent variable is the 
frequency of related terms appearing in job postings. ATTs are estimated with the two-
way difference-in-differences estimator (Sant’Anna and Zhao, 2020), with pre-adoption 
data aggregated into one period and post-adoption into another. Standard errors are shown 
in parentheses. Means of pre-adoption values (𝑡&), 𝑡&$) are shown in square brackets. 
Covariates include the number of postings in the first year the plant appears in the data, 
the commuting zone’s log of wages, cohort fixed effects, and 3-digit NAICS code fixed 
effects. Significance levels: * 10%, ** 5%, *** 1%. 
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Figure A1. Event-study of the effect of robot adoption on job postings for moving 
adoption year to t-1 and t+1 

(A) Moving adoption year to t-1 

 
 

(B) Moving adoption year to t+1 

 
Notes: Figure shows the event-time ATT from moving the robot adoption timing to (A) 
one year earlier and (B) one year later than the original robot adoption year. For example, 
a robotic plant that adopted in 2015, panel (A) moves it to 2014 whereas panel (B) moves 
it to 2016. The control group is never adopters. 
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Figure A2. Relationship between alternative data sources for robots: International 
Federation of robotics (IFR) and BGT job postings 
 

(A) Robot operational stock vs. robotic plants 
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(B) New robot installations vs. robotic job postings 
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(C) Robot operational stock/1,000 workers vs. share of robotic plants 

 
Notes: The horizontal axis represents the yearly and industry average stock of robots and 
robot installations from the International Federation of Robotics (IFR), while the vertical 
axis shows the percentage share of robotic plants from BGT. In panels (A) and (B), the 
size of each bubble reflects average US employment in an industry across years. 
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Figure A3. Long-term robot adoption effect on number of postings 
 

(A) Adopter vs. Not-yet adopter 
 

 
 

(B) Adopter vs. Never adopter 

 
Notes: This figure shows annual ATT on the number of job postings by occupation, 
extending the postadoption periods to t9. Panels (a) and (b) are estimated using an 
unbalanced sample of 1,085 and 28,475 plants, respectively, and include plant size, the 
commuting zone’s log of wage, and 3-digit NAICS code fixed effects as covariates. 
  



 71 

Figure A4. Event study of the effect of robot adoption on full-time employment 
 

(A) No imputation 

 
 
 
 

(B) Median of full-time employment for each plant 
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(C) Last observation carried forward 

 
Notes: This figure shows event-time ATT for the log of full-time employment. Table 5 
shows overall ATT as aggregations of results with no imputation. Panels B and C show 
alternative data imputation methods (other alternatives, available upon request, produce 
similar results). Vertical solid lines represent 95-percent confidence intervals. 
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Figure A5. Event-study of the effect of robot adoption on job postings and full-time 
employment by number of unique titles 

(A) Number of job postings (all occupations) 

 
 

(B) Log of full-time employment (no imputation) 
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(C) Log of full-time employment (median) 

 
 

(D) Log of full-time employment (last observation carried forward) 

 
Notes: This figure shows event-time ATT for the number of job postings and the log of 
full-time employment. Panels C and D show alternative data imputation methods (other 
alternatives, available upon request, produce similar results). Vertical solid lines represent 
95-percent confidence intervals. 
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Figure A6. Robotic and non-robotic plants density in Commuting Zones, 2019 

(A) Number of plants per 1,000 manufacturing employees 

 

(B) Number of plants per 1,000 working-age people 

 

Notes: Figure shows the density of robotic and non-robotic plants per commuting zone 
in 2019. Plant density is measured as the number of robotic or non-robotic plants per (A) 
1,000 manufacturing employees and (B) 1,000 working-age people in a commuting zone. 
The working age population includes individuals aged 20 to 64. Only commuting zones 
with at least one robotic plant are selected. To aid visualization, commuting zones in the 
top 5 percent of the plant density distribution are excluded. Data on employment and 
working-age population are obtained from the Census bureau. 
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Appendix B. Data 

B.1. Robotic plants 

We categorize job postings as either production or support based on SOC codes, with the 
specific codes outlined in Table A4. We classify a production job as robotic if it includes 
any of the following terms:’motoman robot programming’, ’advanced robotics’, ’robotic 
liquid handling’, ’next generation robotics’, ’pick and place robots’, ’robot framework’, 
’robot operating system (ROS)’, ’robot programming’, ’robotic systems’, and ’robotics.’ 

We identify the timing of adoption as the year in which the first production job requiring 
robotic skills is posted. We perform several robustness checks by evaluating the 
consequences for changes in the number of job postings if we use alternative criteria for 
the identification of the timing of introduction of robots. In Table A1 we shift the timing 
of adoption one year back and alternatively, one year forward. In Table A2 we identify 
the year of adoption as that in which at least 5 robotic jobs were posted, and alternatively 
10 postings. The results in both tables show significant and positive effects of adoption, 
slightly different from those in Table 3. 

We classify a plant as robotic if it has at least ten robotic job postings for production 
occupations. This threshold ensures a focus on plants with substantial robotic activity, as 
a substantial number of robotic job postings reflects the integration of robots into their 
production processes. Tables B1 and B2 show the reliability of this cutoff, as the ATTs 
stay significant when plants with fewer than 10 robotic job postings are moved from the 
list of never-adopter plants to the list of robotic plants. As indicated by the preadoption 
mean, these plants are smaller. The smaller average size contributes to smaller absolute 
effects, but the magnitudes of ATTs relative to preadoption means are comparable to those 
in Tables 3 and 5. 

A plant may have already introduced robots before recruiting new workers with robotic 
skills in the external job market, hence generating substitution, complementarity, and 
productivity effects sooner than what is observable in job posting data. This may 
materialize into a positive or negative employment effect prior to the adoption year as 
defined in our approach. The absence of pre-adoption trend in the difference-in-
differences analysis, however, suggests that this is not a major issue. A plant may adopt 
robots yet may not post robotic jobs because trains incumbent workers, transfers them 
from another plant in the same firm, or uses robot integrator contractors. This results in 
misclassifying such robotic plants as non-robotic, attenuating the estimated robot effect 
against our hypotheses. 

A plant may introduce robots along with other capital expansion (e.g., in expectation of 
higher output demand in the future). The expansion may include hiring new workers and 
investing in new capital, including robots. As robot adoption and capital expansion 
happen simultaneously, the estimation from an (unconditional) difference-in-differences 
design combines the effect of the two events. To separate the robot adoption effect, we 
incorporate firm capital expansion—proxied by real capital expenditures normalized by 
real total assets from COMPUSTAT. Table A7 shows the ATTs are significantly positive, 
although slightly smaller. This shows that robot adoption has a separate effect beyond 
general plant expansion. The capital expansion measure is at the firm level, which may 
raise a concern that the expansion may not be distributed equally across plants. As a 
robustness check, we restrict the sample to adopting firms with three or fewer plants to 
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ensure that the expansion happens in robotic plants. We still find a significantly positive 
effect within this subsample. 

We restrict robotic plants to those that continue to post robotic jobs after the year of 
adoption but allow for gaps of one or two consecutive years, provided they post robotic 
jobs in at least one of the last two years of the sample period. These requirements account 
for the possibility that a plant may have low turnover in robotic jobs so may not need to 
post every year but want to ensure that they did not abandon robots, hence the requirement 
for the end of the sample period. In Table B3, we perform another robustness check to 
show that the criterion that a robotic plant is required to post at least one robotic job 
posting in one of the last two years does not bias our results. This exercise alleviates the 
concern that our results may be driven by “successful” robot adopters. The results are 
similar to Table 3. We note, however, that as the difference-in-difference analysis requires 
that robot adoption is “always on”—that is, once a plant adopts robotic technology it 
never abandons it—the inclusion of these plants may violate this assumption as the 
discontinuity in robotic job postings may indicate they abandon this technology. 

  



 79 

Tables B1 and B2 examine the effect of robot adoption under two scenarios: When non-
robotic plants with 1 to 9 robotic production job postings are reclassified as robotic plants 
(panel A), and when the sample of robotic plants is restricted to plants that post 1-9 robotic 
production job postings (panel B). This analysis addresses the concern that plants 
currently classified as non-robotic, because they post very few robotic job postings, may 
actually adopt robots that substitute for workers. Panel A of Tables B1 and B2 show that 
the ATTs are lower than those in Tables 3 and 5 but still significant. The lower ATTs is 
due to the smaller average plant size, as indicated by the pre-adoption number of job 
postings. Panel B of both tables show that these plants are unlikely to adopt robots that 
substitute for workers because they have positive posting and employment growth, 
although the magnitude is smaller. 

Table B1. Robot adoption effect on job postings, evaluating the influence of no-robotic 
plants with 1-9 robotic production job postings 

Occupatio
n 

A. Reclassification of non-robotic to 
robotic plants 

 B. Restricting to plants with 1-9  
production robotic postings  

Pre-adoption 
postings 

ATT  
Pre-adoption 

postings 

ATT 
Not-yet 
adopters 

Never 
adopters 

Not-yet 
adopters 

Never 
adopters 

All 42.86 52.54*** 71.25*** 
 

35.74 25.63*** 32.41*** 
 

 
(3.86) (10.50) 

  
(3.50) (3.03) 

Productio
n 

24.16 31.89*** 44.52*** 
 

20.65 15.01*** 19.82*** 

 
 

(2.36) (7.15) 
  

(2.35) (1.94) 
  High-
skill 

17.07 24.22*** 36.04*** 
 

13.75 10.77*** 15.22*** 

 
 

(2.13) (6.91) 
  

(2.12) (1.82) 
  
Medium-
skill 

1.40 1.65*** 2.06*** 
 

1.30 0.81*** 1.06***  
(0.12) (0.15) 

  
(0.13) (0.12) 

  Low-
skill 

5.69 6.03*** 6.42*** 
 

5.60 3.44*** 3.54*** 

 
 

(0.40) (0.43) 
  

(0.50) (0.38) 
    Direct 1.27 1.40*** 1.49*** 

 
1.32 0.67*** 0.75*** 

 
 

(0.14) (0.13) 
  

(0.15) (0.12) 
Support 18.70 20.65*** 26.73*** 

 
15.09 10.62*** 12.59*** 

 
 

(1.56) (3.78) 
  

(1.40) (1.21) 
Plants 

 
4,167 27,247 

  
3,082 26,162 

Robotic 
plants 

 
4,167 4,167 

  
3,082 3,082 

Notes: Sample robotic plants include (A) plants that post at least one robotic production 
job posting and (B) plants that post 1 to 9 robotic production job postings that were 
previously classified as non-robotic. Covariates include first-year number of job postings, 
commuting zone’s average log of wages, and 3-digit NAICS. Standard errors are clustered 
by firm. Significance levels: * 10%, ** 5%, *** 1%. 
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Table B2. Robot adoption effect on log of employment, evaluating the influence of non-
robotic plants with 1-9 robotic production job postings 

variable 
A. Reclassification of non-

robotic to robotic plants 
B. Restricting to plants with 1-9 

production robotic postings  
Log(Full-time employment) 0.100*** 0.080*** 

 (0.024) (0.025) 
Mean Log(Preadoption 
employment) 5.53 5.51 
Observations 28,016 27,780 
Plant-cohorts 14,008 13,890 
Plants 4,344 4,226 
Robotic plants 523 405 

Notes: Sample robotic plants include (A) plants that post at least one robotic production 
job posting and (B) plants that post 1 to 9 robotic production job postings that were 
previously classified as non-robotic. The comparison group is never adopters. ATTs are 
estimated with the two-way difference-in-differences estimator (Sant’Anna and Zhao, 
2020). Standard errors are shown in parentheses. Covariates include employment in the 
first year the plant appears in the data, the commuting zone’s log of wages in 2007, cohort 
fixed effects, and 3-digit NAICS code fixed effects. Significance levels: * 10%, ** 5%, 
*** 1%.  
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Table B3 shows the effect of robot adoption when robotic plants that do not post any 
robotic job postings in the last two years of the sample period are reclassified from non-
robotic job postings into the sample of adopters. This exercise alleviates the concern that 
our results may be driven by “successful” robot adopters.  

Table B3. Robot adoption effect on job postings, incorporating robotic plants with zero 
robotic job postings in the last two years of the sample period 

Occupation Preadoption mean 
ATT 

Not-yet adopters Never adopters 
All 62.98 67.83*** 97.06*** 

  (13.42) (18.23) 
Production 34.27 41.61*** 57.14*** 

  (9.18) (10.10) 
High-skill 26.61 32.21*** 44.51*** 

  (9.03) (9.61) 
Medium-skill 1.60 2.11*** 2.81*** 

  (0.23) (0.24) 
Low-skill 6.06 7.29*** 9.83*** 

  (0.61) (0.95) 
Direct 1.17 1.88*** 2.26*** 

  (0.23) (0.21) 
Support 28.71 26.22*** 39.91*** 

  (4.60) (8.05) 
Plants  1,450 28,557 
Robotic plants  1,450 1,450 

Notes: Sample robotic plants include short-term adopters, defined as robotic plants that 
do not post any robotic job postings in the last two years of the sample period. Covariates 
include first-year number of job postings, commuting zone’s average log of wages, and 
3-digit NAICS. Standard errors are clustered by firm. Significance levels: * 10%, ** 5%, 
*** 1%. 

 

  



 82 

B.2. Analytical sample 

From 19,390,104 U.S. job postings in manufacturing (NAICS codes 31-33) between 2010 
and 2022 that have a valid firm name, a geolocation, and contain at least two skills, we 
identify 1,306,254 establishments as unique firm-city-state observations.17 These 
establishments include manufacturing plants, maintenance centers, training centers, 
distribution centers, research centers, sales centers (e.g., dealerships), headquarters, and 
others. In our study, we focus exclusively on manufacturing plants and maintenance 
centers—hereinafter referred to as ’plants’—that are configured for the integration of 
robotics into their manufacturing processes. To identify these plants, we applied a set of 
exclusion criteria, eliminating any establishment that meets any of the following 
conditions: a proportion of sales-related job postings exceeding 10 percent; fewer than 
two postings for high-skill positions; fewer than two postings for either medium-skill or 
low-skill positions; or an average of fewer than seven job postings annually in years with 
recorded postings. By applying these restrictions, we identified a sample of 37,959 plants 
with 9,203,823 postings deemed suitable for our analysis.18 

Next, we implement a further set of selection criteria on the pool of 37,959 plants to define 
our analytical sample. First, we remove 3,032 plants that reported at least two consecutive 
years of zero job postings. Subsequently, we further refine the remaining sample by 
excluding 92 recruiter plants.19 Following the initial exclusions, we further narrow down 
our sample by removing 2,916 plants that have not posted any technical robotic job 
postings in the last two years of their operation. Next, we exclude 654 adopter plants 
lacking data on their pre-adoption period. Each step of removal is applied sequentially to 
the subset of plants remaining after the previous step, ensuring a refined and specific 
analytical sample. 

Firm names from the same employer may vary in how they appear in the BGT dataset. 
For example, ‘3M’ (a company operating in industry, worker safety, healthcare, and 
consumer goods) may also appear as ‘3M Company’ in another job posting. To minimize 
variations and improve the matching outcome, we perform standardization on firm 
names. This step is crucial for calculating, for example, the total number of plants per 
firm or job postings per plant, since the basis for aggregating the job postings and plants 
uses firm names. We perform the steps below, in which employer names are lower-cased 
and regular expressions are involved to capture a variety of terms. 

 
17 Although the BGT dataset includes geolocations, which allow us to identify multiple 
establishments within a city, we use city-state combination as our definition of 
establishments. Based on our own investigation, these assigned geolocations are 
approximations of the actual locations. Moreover, establishments within a city may 
operate like one single establishment due to their proximity. 
18 The U.S. Census reported 55,871 establishments with at least 100 employees in 2020. 
The discrepancy with our data is because (1) the Census data include types of 
establishment other than plants, (2) our criteria is too restrictive and inadvertently remove 
some plants, and (3) not all establishments post online job advertisements. 
19 Several establishments in the original dataset are not manufacturing plants despite having the 
manufacturing industry codes (i.e., NAICS 31-33), but instead provide employment services, such as hiring 
on behalf of other manufacturing establishments and human resource consulting. These establishments 
may post robotic job postings and thus may introduce an error in our identification of robotic plants. To 
avoid this, we use several keywords (e.g., ’hr’, ’human resourc’, ’personnel’, ’recruit’, ’staff’, 
’employment’) to identify and remove them from our sample. 
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Internet suffixes (e.g., ’com’, ’org’, ’gov’) are removed. 

Non-alphanumeric characters replaced with space or nothing (e.g., ’*’, ’-’, ’#’, ’.’, ”’). 

Irrelevant words (e.g., ’and’, ’amp’, ’u.s.’) are removed. 

Common words are standardized (e.g., ’manufacturing’ to ’mfg’, ’technology’ to ’tech’, 
’laboratories’ to ’lab’). 

Firm legal forms (e.g., ’incorporated’, ’company’, or ’corporation’) and their misspellings 
(e.g., ’inc’, ’comapnies’, ’corporatoin’) are removed. 

Extra spaces resulting from the previous steps are removed. 

B.3. Matching Process of BGT and OSHA plants 

Firm names in BGT and OSHA are matched with fuzzy matching after performing name 
standardization. We specify a maximum Jaro-Winkler distance threshold of 0.036155203, 
based on our examination of which value starts to yield a bad matching result. 
Establishments in both datasets are then matched through their cities and states in which 
they are located. This process yields 9,162 plants from 3,743 firms. 

We further restrict this sample with the following criteria: 

Removing outliers defined as plants with annual average employees and average work 
hours per employee outside the thresholds of [11.00, 7,412.05] for employees and 
[465.9086, 5,474.6914] for work hours. Values outside these thresholds indicate the 1-
percent outliers. The rationale for excluding these extreme values is that they likely 
represent unusual cases or measurement errors that could distort the analysis, as we 
observe that a few establishments have an unusual number of employees relative to the 
reported annual work hours. 

Including plants that are available in BGT and OSHA and have no missing commuting 
zone’s wage and full-time employment data during 2016-2022. 

Removing robotic plants that adopted robots before 2017 (since plants that adopted robots 
in 2016 or earlier do not have pre-adoption data) or with missing pre- and post-adoption 
postings. 

These criteria yield 5,788 plants from 2,563 firms. 

Plants that report to OSHA are probably different from those who do not, so they are not 
likely to be representative in some respects of our analytical sample. However, there is 
no obvious reason to expect that robot adopters and non-adopters will have different 
responses to robot introduction than otherwise similar plants in the analytical sample. 

B.4. Plant primary NAICS codes 

Each job posting is associated with a 3-digit North American Industry Classification 
System (NAICS) code. A plant, particularly a larger one, may have job postings with 
various industry codes. We assign the largest frequency of 3-digit job posting-level 
NAICS code as the primary industry code to each plant. If a plant has two or more NAICS 
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codes with the same largest frequency, we choose the code with the smallest number as 
the primary industry code. If a plant does not have any identifiable NAICS code, we 
choose the code that is most frequently assigned to other plants within the same firm as 
the primary industry code. The remaining unidentified plants are assigned NAICS 33. 
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Appendix C. Relationship between job postings and employment 

We correlate the number of job postings with the log of number of employees in the 
OSHA dataset during 2016-2022. We have 13,732 observations from 4,434 plants to 
estimate the posting-employment relationship. Our preferred model (column (5) of Table 
C1) gives us the following estimates: 

∆log	(𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡)%" = 0.0011 × 𝑃𝑜𝑠𝑡𝑖𝑛𝑔𝑠%" − 8.46 × 10&3 × 𝑃𝑜𝑠𝑡𝑖𝑛𝑔𝑠%"2  (1) 

Our model indicates that one job posting yields a 0.11-percent increase in employment, 
but the relationship weakens for larger plants, as indicated by the second term in the 
equation. This relationship is visualized in Figure C1. We use this estimate for converting 
job postings into the percentage change of employment per plant. Table 3 gives us the 
range for change in job postings; adopters increase job postings by 98 per year, compared 
to never adopters, following robot adoption. Plugging this number into the equation, the 
back-of-the-envelope estimate of the percentage increase in employment is 10.9 percent 
per year [95% CI: 5.6, 16.5].  

This range is close to the difference-in-difference estimate for employment from Table 5 
(15 percent) and within the ballpark of previous studies on the employment effect of 
robots in other countries that employ difference-in-differences designs at the firm level. 
Koch et al. (2021) estimates that robot adoption expands employment among Spanish 
firms by five percent in the adoption year and ten percent by the end of the tenth year. In 
Finland, Hirvonen et al. (2022) shows that employment gradually increases following 
robot adoption and reaches 25 percent by the fifth year. Another study among French 
companies finds a steady 0.4 annual increase in the log of employment during ten 
postadoption years (Aghion et al., 2020). Dixon et al. (2021) in Canada estimate an 
average annual increase of 0.05 log point of employment during four years following 
robot adoption. In contrast, Bessen et al. (2023) find a negligible effect among large Dutch 
firms, whereas smaller firms contract by about 20 percent.  
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Table C1. Change in log of employment in relation to job postings, 2016-2022 

Dependent variable: ∆log(Employment) 
Model: (1) (2) (3) (4) (5) 
Variables           
Constant 0.0107** 0.0030 - - - 
  (0.0038) (0.0040)       
Postings 0.0002* 0.0005*** 0.0011*** 0.0004*** 0.0011*** 
  (7.6 × 10-5) (0.0001) (0.0002) (0.0001) (0.0002) 
Postings2 - -5.26 × 10-7* -8.12 × 10-7** -4.55 × 10-7* -8.46 × 10-7** 
    (2.32 × 10-7) (2.48 × 10-7) (2.25 × 10-7) (2.8 × 10-7) 
Fixed effects           
Plant - - Yes - Yes 
Year - - - Yes Yes 
Statistics           
Adjusted R2 0.00056 0.00182 0.01228 0.01022 0.02404 
Plant-years 13,732 13,732 13,732 13,732 13,732 
Plants 4,434 4,434 4,434 4,434 4,434 
Mean (SD) full-time 
employment 

348.536 348.536 348.536 348.536 348.536 
(442.452) (442.452) (442.452) (442.452) (442.452) 

Mean (SD) postings 33.887 33.887 33.887 33.887 33.887 
  (64.862) (64.862) (64.862) (64.862) (64.862) 

Notes: The dependent variable is the change in the log of full-time employment from year t-

1 to t. The full model is ∆log	(𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡)%" = 0.011 × 𝑃𝑜𝑠𝑡𝑖𝑛𝑔𝑠%" − 8.46 × 10&3 ×

𝑃𝑜𝑠𝑡𝑖𝑛𝑔𝑠%"2 , where i denotes plants, t denotes years, γi is plant fixed effects, and τt is year 

fixed effects. Significance levels: * 10%, ** 5%, *** 1%. 
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Figure C1. Relationship between postings and change in full-time employment 

 

Notes: This figure visualizes the relationship between postings and the predicted value of 
percent employment change using estimates from column (5) of Table C1. The area above 
and below the solid line is the 95-percent confidence bands. 
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Appendix D. Job postings, hirings, separations, and employment 

We perform a simple exercise by correlating the industry average number of job postings 
per plant with the industry average new hirings and separations per establishment data 
from the Quarterly Workforce Indicators (QWI). These correlations allow us to derive 
estimates for annual changes in hiring and separations, and the corresponding net change 
in employment. The average new hiring and separations per establishment within a 
specific industry and year are computed by dividing the total number of industry-level 
new hires and separations by the total number of establishments, as sourced from the 
Statistics of U.S. Businesses (SUSB). To be comparable to our BGT sample, we restrict 
our sample to hiring and separations from larger establishments, specifically QWI 
establishments with more than 250 employees and SUSB establishments with more than 
200 employees. 

We conduct a regression analysis with these variables against the average number of 
postings per plant. To eliminate industry-specific variations, we incorporate 3-digit 
NAICS fixed effects in our analysis. Our model is Yit = Postingsit + δi + εit, where Yit 
denotes new hires or separations in industry i in time t and δi denotes 3-digit NAICS fixed 
effects.  Table D1 shows that one job posting per plant is equivalent to approximately 1.1 
annual new hires and 0.89 separations per establishment. We multiply these coefficients 
with the ATT for each post-adoption period from the event-study analysis to estimate the 
annual change in new hires and separations, and by subtracting these values, we derive 
the net employment effect on a robot adopter. Table D2 shows that employment increases 
by around 6-8 workers annually following robot introduction. This is equivalent to 2.6-
3.2 percent of the mean employment per establishment (i.e., 260 workers). This is an 
economically meaningful increase in net employment as our data indicate that robot 
adopters in the manufacturing sector are close to two thousand plants. For a sensitivity 
analysis, the new hiring coefficient has to decline or the separation coefficient has to 
increase by 0.23 points (corresponding to 20 and 25 percent of new hiring and separation 
current values, respectively) in order for net employment change to start to turn negative. 
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Table D1. Hiring, separation, and job postings per establishment 

Dependent Variables:  New hiring Separation 

Model: (1) (2) 

Variables   

Postings 1.123*** 0.892*** 

 (0.217) (0.239) 

Fixed effects   

3-digit NAICS Yes Yes 

Fit statistics   

Observations 226 226 

R2 0.956 0.969 

Within R2 0.315 0.243 

Notes: Table shows estimates for the association between annual job postings and (1) new 
hiring and (2) separation. Observations are at the industry-year level, weighted by the 
number of establishments within the corresponding industry and year. Significance levels: 
* 10%, ** 5%, *** 1%. 
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Table D2. Net employment effect of robot introduction 

Period Event-time ATT 

for job postings 

New hiring Separation ∆employment % mean 

employment 

(1) (2) (3) (4) (5) = (3) - (4) (6) 

0 70.35 79.00 62.75 16.25 2.19 

1 85.63 96.16 76.38 19.78 2.67 

2 93.73 105.26 83.61 21.65 2.92 

Notes: Table shows estimates of the annual change in employment three years following 
robot introduction (column 5) derived from subtracting new hiring with separation. The 
estimates for new hiring and separation in columns 3 and 4 are calculated by multiplying 
ATTs in column 2 with the corresponding coefficients for the two variables in Table D1. 
ATTs are obtained from event study analysis of the unadjusted number of job postings. 
The mean employment per establishment is 740 workers. 

 

 

 


